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Abstract 

 This dissertation makes contributions towards knowledge of optimizing of laser 

weapon performance when operating in the air-to-ground (ATG) regime in thermal 

blooming conditions.  Wave optics modeling techniques were used to represent laser 

weapon performance in a high fidelity sense to allow progress to be made toward 

improving lower-fidelity scaling laws that can be used in systems level analysis which 

has need for better representations of thermal blooming. 

Chemical-oxygen iodine laser (COIL) based weapon systems that operate near the 

ground will experience thermal blooming due to atmospheric absorption if output power 

is sufficiently high.  The thermal lens in the ATG case is predominantly in the far-field of 

the optical system which puts the problem outside the envelope for most classical phase 

correction techniques.  Focusing the laser beyond the target (defocus) in the air-to-ground 

regime is shown to improve irradiance at the target and can be thought of as reducing the 

thermal blooming distortion number, ND, rather than phase correction.  Improvement is 

shown in a baseline scenario presented and all variations from it explored herein.  The 

Breaux ND is examined for potential use in a defocus scaling law, and a correction factor 

due to Smith (1977), developed for a different context, is proposed to address 

deficiencies.  Optimal defocus settings and expected improvement are presented as a 

function of Breaux ND.  Also, the generally negative interaction between turbulence and 

thermal blooming is investigated and shown to further limit performance potential of 

ATG laser weapons.  This negative interaction can impact the weapon design trade space 

and operational methods for minimizing the interaction and thermal blooming are 

explored in a case study. 



 

 

CHARACTERIZING EFFECTS AND BENEFITS OF BEAM DEFOCUS ON HIGH 

ENERGY LASER PERFORMANCE UNDER THERMAL BLOOMING AND 

TURBULENCE CONDITIONS FOR AIR-TO-GROUND ENGAGEMENTS 

 
1. Introduction 

 

1.1. Research Significance 

With the development of high energy laser (HEL) technology as well as the 

supporting technologies over the past four decades, it appears the United States is within 

a year or two of fielding actual HEL weapons, and there is little doubt that HEL weapons 

will find wider applicability beyond the originally planned missions.  As an example, it 

would not be too controversial to say that the preeminent HEL weapon development in 

the USAF today, and perhaps even in the Department of Defense (DoD), is the Airborne 

Laser (ABL) program.  The ABL prototype consists of a cargo version of the Boeing 747 

aircraft which is being heavily modified to carry a megawatt class chemical oxygen-

iodine laser (COIL), as well as the necessary equipment to propagate (“fire”) the laser 

with destroying effect against enemy launched ballistic missiles hundreds of kilometers 

away.  Another US weapon under advanced development, conducted in cooperation 

between Israel and the US Army, is the Mobile Theater HEL (MTHEL, pronounced 

“EM-thel”).  The MTHEL is designed to shoot down short range artillery rockets of the 

type sometimes used by anti-Israel terrorists, but has even had success at destroying 

incoming artillery shells!  MTHEL uses deuterium-fluoride laser technology described 

later.  Another COIL weapon development is the Advanced Tactical Laser (ATL) 
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demonstrator, in which a Lockheed C-130 cargo aircraft will be fitted with a slightly 

different COIL technology than ABL that allows the laser to fire in denser air near the 

ground.  Primary targets for ATL will be stationary or slow-moving ground targets, and 

much interest in ATL comes from the USAF Special Operations community. 

 HEL weapons are progressing quickly indeed, but none of the foregoing is meant 

to suggest that HEL weapons are a panacea for force protection or force application.  

First, despite the given progress, there is the issue of what the technology has promised 

versus what is delivered.  Though this concern is by no means unique to HEL weapons, 

the fact remains HEL weapons have often taken much longer to develop than was 

expected when the programs were sold to DoD leadership.  Second, even if HEL 

weapons work as advertised, they are not “all weather” weapons:  Lasers cannot shoot 

through clouds or thick fog, and even though the ABL flies above the weather, its 

performance still suffers during some types of atmospheric phenomena.  In the DoD’s 

capabilities-based acquisition perspective, this may not be much of a problem, since the 

deciding factor is, “If its value-to-cost ratio is high enough, buy it in spite of its 

shortcomings.”  But being more realistic, money spent on HEL weapons (operational 

ATLs) would very likely—though not certainly—reduce the amount of money spent on 

different technology weapons that have greater weather capability (C-130 Gunships).  As 

such, the decision to pursue of HEL technology is one of balancing, or trading, risks and 

benefits.  In the notional example of ATLs procured instead of Gunships, the USAF and 

the supported combatant commanders inherently would have accepted a risk (e.g., 

reduced all-weather engagement capability, reduced kinetic attack ability) in order to get 

the benefit of the HEL when it can be used (e.g., farther stand off range, reduced 
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collateral damage), as well as accepted the risk that the ATL performance can be 

delivered. 

 To support HEL investment decisions at all levels, it is necessary to develop a 

robust capability to evaluate the risks of competing technologies (e.g., HEL vs. 

conventional, or HEL #1 vs. HEL #2).  In the notional ATL example above, the decision 

was at the major program level; however, decision support is needed at other levels as 

well, such as the selection of which HEL technologies to invest in given limited research 

and development budgets.  The DoD and the services have vast experience in conducting 

technology and weapons trade studies.  Very often, one of the major aspects of these 

studies is the use of computer modeling and simulation to determine potential military 

utility of the various competitors by judging how well they perform in a simulated battle 

environment.   

An advantage to using computer simulation is that a large number of possible 

scenarios can be examined in a relatively short period of time in an attempt to determine 

the likely utility of a given technology at various performance/risk levels.  It is the 

inclusion of technology performance at different risk levels in a study that gives decision 

makers the most insight into the decision problem.  Here is typical risk/performance 

breakout:  high performance (i.e., the technology delivered most of what could be hoped 

for—riskiest), medium performance (i.e., the technology delivered a moderate portion of 

what was hoped for—less risky), and low performance (i.e., the technology delivered 

only some of what was hoped for—least risky).  The effect of examining lots of scenarios 

for competing technologies for a number of risk levels is that many runs of a computer 

simulation are necessary. 

1-3 



 

 Usually one of the internal scoring parameters, and sometimes a major output, of 

these simulations is the probability of kill, or Pk, when a technology/weapon under 

examination is engaged against an enemy target.  The rules that determine Pk as a 

function of the engagement scenario variables are the heart of these simulations.  For 

many weapons, the Pk relationship to the scenario can be derived from testing of the 

weapon itself, e.g., the ratio of successful outcomes to the number of trials.  However, 

such testing is itself expensive, its results subject to confidence limits due to the sample 

size, and allowances must be made in the simulation for aspects of the battlefield that 

were not addressed in testing (e.g., expected future countermeasures, different weather, 

new upgrades).  Some of these issues speak to confidence bounds in the simulation 

results in aggregate, which will be addressed later, but let us continue to examine issues 

with weapons representation in particular.   

   The very nature of technology and weapons decision making is future-oriented, 

since any product that arises from those decisions is typically years away from 

employment.  As such, even weapons that have an extensive current database for building 

Pk relationships must have their performance extrapolated to some risk level of future 

performance.  Regarding HEL weapons, their future performance must also be estimated, 

as is true with any new system.  However, extensive databases do not currently exist to 

support that estimation as they do for more traditional kinetic weapons, so there is 

potential for additional uncertainty.   

Another difference is that HEL performance is typically described in terms of 

output power (usually in kilowatts, kW, or megawatts, MW), magazine (usually in 

seconds of laser time), and/or duty cycle (e.g., time between shots) rather than range and 
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speed.  With a kinetic weapon, if it can get to the target (range) in the time required 

(speed), then a success/fail determination can be made based on the assessed 

vulnerability of that target to that weapon.  However for an HEL weapon, the propagation 

of the laser energy from the weapon to the target must be modeled, which is a primary 

focus of this research.  Also, range and Pk are more fluid for HEL weapons than for 

kinetic weapons, though they can certainly be characterized.  For example, if an HEL can 

kill a target (Pk=1) at range x in time t(x), then since the amount of power delivered 

typically falls off with range, it may also be able to kill the target at range 2x, but it will 

usually require more laser time, or dwell time, to do so, t(2x) > t(x).  Also, for kinetic 

weapons, Pk for engagement (Pk
(e)) is a function of whether or not the weapon arrived: 

 

⎩
⎨
⎧

=
arrive  tofailed weapon if ,0

arrived weapon if ,)( ke
k

P
P  

 

On the other hand, for an HEL engaging most targets, Pk will be an increasing 

function of dwell time, and it will also depend on other factors such as range and 

atmospheric conditions.  This relationship of Pk to dwell time arises from an assumption 

about the primary success mode of HEL weapons: that targets are typically destroyed by 

heating them up in a vulnerable area around an aimpoint until they fail.  When this is the 

case, and all other aspects of a scenario being equal, increased dwell time means 

additional energy delivered to the target (energy = power × time), which translates into 

additional heating and increased Pk.  The need for a functional relationship between Pk 

and energy delivered to (or more accurately absorbed by) the target places an increased 

burden on the DoD intelligence and vulnerability community relative to the already 
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difficult requirement for developing Pk relationships for kinetic weapons.  This will be 

discussed in more detail later. 

The issue of energy deposited in a given area on the target is an important one for 

the present research.  Much attention has been focused in the literature on characterizing 

the peak intensity of the beam at the target, which in terms of units is usually represented 

as W/m2.  (An equivalent term for intensity is irradiance, sometimes used herein.)  

However, since peak intensity only occurs at one point in the beam profile on target 

(often falling off quickly as a function of distance from the peak), it is usually not 

adequate for determining energy deposited in a given area at the target over some time.  

What is needed when peak intensity alone is inadequate to predict mission success is the 

average intensity impinging upon the area in question.  The product of that average 

intensity and the specified area is the power incident upon that area, which is sometimes 

referred to as a “bucket”, giving rise to the term power in the bucket (PIB).   

 Returning to the issue of modeling the laser propagation from the weapon to the 

target, there are two primary effects that must be accounted for, especially for HEL’s 

operating near earth surface:  atmospheric turbulence and thermal blooming.  The 

atmospheric turbulence effect is the distortion of a laser beam that is caused by random 

spatial variations in the refractive index of the atmosphere along the optical path of the 

laser.  Turbulence, from a time-averaged perspective, causes the laser beam to spread out, 

resulting in reduced average power over a given area in the target plane.    

The thermal blooming effect is a distortion due to the laser beam itself causing a 

change in the refractive index of the atmosphere in the optical path (due to heat 

absorption by atmospheric gases).  In the absence of wind, thermal blooming typically 
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causes the beam to expand.  This is because higher temperature usually means lower 

density and lower refractive index in the center of the beam path, and light bends away 

from lower refractive indices.  In most situations, there will be some kind of wind (either 

actual wind or effective wind due to beam slewing, or platform or target motion).  In 

these cases, the wind brings cooler, more dense air into the beam path, displacing the 

heated less dense air, and following the principle given above, experiments have long 

shown the beam will bend into the wind, spreading in the cross wind direction into a 

crescent shape bowing into the wind direction. 

Additionally, besides the effects of turbulence and thermal blooming, there is the 

interaction of those two effects which can be important.  To illustrate, consider a focused 

HEL beam propagating in a low turbulence environment; since the beam spread is low, 

intensity along the center of the beam path (the optical axis, or on-axis, intensity) can 

become quite high, resulting in rapid atmospheric heating and significant thermal 

blooming distortion at the target.  On the other hand, this time consider the same beam in 

a high turbulence environment; turbulent spreading keeps the on-axis intensity low, 

reducing the effect of thermal blooming and resulting in less total beam distortion at the 

target than in the previous case. 

Extensive theory and associated computer models, called wave-optics codes, do 

exist that allow for reasonably accurate calculation of such propagations, including 

interaction effects.  However, wave-optics code evaluations are very time intensive and 

are not conducive to the rapid evaluations needed to conduct trade studies as described 

above.  Scaling law models—defined as more closed-form representations of laser 

propagation derived either directly from theory, by curve fitting empirical or wave-optics 
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simulated data, or a combination—have been developed that address many aspects of the 

propagation problem and which are, by design, much faster than wave-optics codes.  

However, there was no research found that simultaneously addressed the issues of 

average power prediction and the thermal-blooming/turbulence interaction.  Such a 

capability would significantly enhance the ability to conduct trade studies using modeling 

and simulation since an increased number of scenarios can be investigated over the 

number that could be investigated using wave-optics modeling.  Additionally, 

representing the performance on target from a power in the bucket perspective (PIB), as 

well as accurately accounting for the interaction effect mentioned above, would improve 

the accuracy of these studies versus those conducted with the peak intensity perspective 

(when a thermal kill paradigm is more appropriate) or lesser specified scaling law 

models. 

 

1.2. Research Scope 

 The presented research focuses upon two areas:  (1) Accurate prediction of peak 

intensity performance across a wide range of air-to-ground HEL scenarios under thermal 

blooming and turbulence; and (2) development of PIB scaling law codes that allow 

prediction of power in a radial bucket that accounts for the non-radial nature of many 

thermally bloomed beams. 

 In addressing these areas, first the performance of existing peak intensity scaling 

laws will be examined in relation to wave-optics generated ATL-like data.  This will give 

insight into where additional analysis should be focused.  Additionally, some candidate 

PIB parametric approaches will be constructed and fit to the same data to assess their 
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promise for development into a scaling law.  Next, the results of the peak intensity 

analysis will be tested using a broader wave-optics experimental design that includes 

additional parameters not in the ATL scenarios.  To allow for a broader investigation in 

this step, a surrogate for turbulence (such as beam defocus) will likely be used as a time-

saver.  At a later stage, turbulence will be re-introduced and corrections will be applied, if 

necessary.  Potential theoretical contributions lie in the extension of the peak intensity 

scaling laws to a continuum of aperture irradiance and obscuration profiles, accounting 

for apparently stronger focusing effects in air-to-ground propagation than exists in 

current analytic scaling law, and development of PIB parametric predictors.  Culmination 

of research is expected to be fast-running, flexible, and accurate code for ATL-like 

application, as well as other scenarios, that can be used in representing HEL weapons in 

the present and future battlespace.   

 



 

2. Literature Review 

 

2.1. High Energy Lasers 

2.1.1. Average Power 

The definition of a High Energy Laser (HEL), or equivalently a high average 

power laser, is somewhat subjective since the average power threshold to be classified as 

“high” depends on the target.  Often, an HEL is defined as a laser which could potentially 

cause a heat-induced effect (usually damage) to its target.  More specifically, that damage 

would occur to a non-cooperative target such that the effect would have some practical 

value, often in a military sense—this is the perspective of the present research effort.  A 

very rough scale of HEL classification according to average power would be: 1 kW, 

probably not; 10 kW, maybe; 100 kW, usually; and 1 MW, certainly.  It is important to 

emphasize the phrase “potentially cause”; the reason is that many lasers have been 

denoted as HEL’s that have never been fashioned into a weapon that actually caused 

heat-induced effects to a non-cooperative target (especially those HEL’s that are still on 

the drawing board). 

 

2.1.2. Laser Type 

 There are several categories of laser construction that have or are currently being 

scaled to use as HEL’s.  The category to achieve HEL status the earliest is the gas 

dynamic laser.  First, a discussion on the construction of a laser is useful:  Lasers usually 

consist of an optically resonant cavity that can contain a gain medium.  The gain medium 

is a substance whose atoms can be excited to a state such that a photon of light at a 
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certain wavelength passing near the excited atom will stimulate the emission of another 

photon (returning the atom to a less excited state) at the same wavelength traveling in the 

same direction with the same phase as the first photon—in other words, the power of the 

first photon has been amplified.  LASER is actually an acronym for light amplification by 

stimulated emission of radiation (Smith, 1977), and from the forgoing, you can see why.  

When the excited gain medium is placed in an appropriate resonant cavity, all of the 

stimulated emission will quickly align itself with the cavity, and when a portion of the 

light energy is released from the cavity (often by a partially silvered mirror or an opening 

in one end of the resonator), the resulting beam of light propagates with very low 

divergence, or spreading—this is the laser beam. 

 In a gas dynamic laser, the gain medium is a gas that is forced (often 

perpendicularly) through the resonant cavity and which contains atoms that have been 

excited to the appropriate state by means of some prior chemical reaction—for this 

reason they are also called chemical lasers.  The purpose of the forced flow is to 

continually re-supply the resonator with excited gain material.  Examples of gas dynamic 

lasers include the chemical oxygen-iodine laser (COIL), invented at Kirtland AFB, NM.  

This is the basis for the USAF’s AirBorne Laser (ABL) and Advanced Tactical Laser 

(ATL) programs, with average powers of approximately 1 MW and 25 kW at a 

wavelength (λ) of 1.315 μm, respectively.  Another example is the deuterium-fluoride 

(DF) laser, extensively tested at White Sands Missile Range, NM, and the basis for the 

US Army’s Mobile Theater High Energy Laser (MTHEL) program.  Finally, there is the 

hydrogen-fluoride (HF) laser, which operates at primary wavelengths that cannot be 

propagated efficiently in the atmosphere, but which is still an excellent candidate for a 
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space-based laser (SBL) for anti-missile defense (AMD).  As one might guess from the 

programs just cited, gas dynamic lasers have reasonable power-to-system-weight ratios at 

HEL-like average power levels.  However, they are still quite heavy and often their 

weight cannot be scaled efficiently to lower power levels.  Another oft cited drawback to 

gas dynamic lasers is that they require a fuel supply (the gain medium chemicals), which 

means they have a limited magazine, or amount of “laser on” time, due to depletion of the 

chemicals.  Also, there are the added logistical requirements of transporting and storing 

laser fuel, and in some cases the fuel and/or the by-products of the chemical reaction are 

hazardous. 

 The drawbacks of gas dynamic lasers have increased the research emphasis on 

solid-state lasers (SSLs), also called electric lasers.  SSLs under consideration for HEL 

application are usually characterized by having a rare-earth doped crystal as the gain 

medium, the excitation of which is accomplished by flash lamps or diode lasers that 

direct energy into the gain crystal (often from a direction perpendicular to the resonant 

cavity optical axis).  The resulting excited atoms then give up that energy to the resonant 

optical field.  The only resource required to fire an SSL is electricity; hence as long as 

there is electric power, there is an “unlimited” magazine.  Quotes are used because there 

is another limiting factor that applies to both gas-dynamic lasers and SSLs, and that is 

reliability.  The fact that the finite magazine is thought to be the most limiting factor in 

gas dynamic lasers is a reason reliability was not mentioned earlier.  However, reliability 

will likely be a limiting factor for SSLs.  This potential drawback is underscored by the 

fact that the closer to design limits one operates SSLs to produce more power, the faster 

they experience component failures.  Another drawback of SSLs is heat production:  A 
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by-product of gain medium pumping is excess heat that must be removed from the laser.  

Heat management techniques include adding weight for cooling devices, reducing shot 

time lengths, increasing time between shots, or a combination of the three.  Heat 

management is related to reliability because many component failures are heat related.  

Another drawback is that current power-to-weight ratios are relatively low, though 

improving this is an active area of research.  There are no working examples of SSLs that 

are squarely in the HEL category, but technologies that are being pushed in that direction 

include Nd:YAG (neodymium-doped ytterbium aluminum garnet crystal, λ = 1.064 μm) 

as the gain medium (Verdeyen, 1995, pp. 359-362).   

 Other laser types include the free-electron laser (FEL) which the US Navy is 

attempting to scale in power up to 1 MW, but these are so heavy that they can only 

realistically be deployed on ships.  FELs do not have a gain medium; rather they use 

magnets to vibrate accelerated electrons in the resonant cavity to produce and amplify the 

resonant optical field (Verdeyen, pp. 417-423).  Also, there are gas-discharge lasers 

where the gain medium is a gas contained in a cell inside the resonant cavity which is 

excited a similar manner to SSLs.  Examples of the latter include the common red HeNe 

(helium neon) laser (λ = 0.6328, 1.15 μm) and the venerable CO2 laser (λ = 9.4 to 10.6 

μm), versions of which can achieve significant average powers (Andrews et al. 1998, p. 

16).  Though they are not great candidates for use as HELs as understood in this research, 

CO2 lasers are used extensively in laboratory experiments that simulate the expected 

effect of the atmosphere on HEL weapons (Smith, 1977). 

 This is not meant to be a complete discussion on HEL technology, but rather a 

primer from the perspective of HEL weapons.  There are exceptions—e.g., in the early 
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1980’s, the Airborne Laser Lab used a gas dynamic CO2 laser against non-cooperative 

targets—as well as other technologies and other novel concepts under development.  For 

most of this research, we will focus on the air-to-ground mission of an ATL-like platform 

using a COIL device. 

 

2.2. Atmospheric Turbulence 

2.2.1. Introduction 

 The propagation of lasers through the atmosphere, not surprisingly, is affected by 

the optical characteristics of the beam path that arise from fluctuations in air mass 

velocity, pressure, and temperature.  These fluctuations are random in nature, though they 

have been shown to follow definable statistical rules in many instances.  These statistical 

rules can be very mathematically intensive, even though, according to Andrews and 

Phillips (1998), their derivation has largely been based upon physical insight and 

empiricism, and not from “first principles” (p. 44).  Kolmogorov first developed the 

foundations of modern turbulence theory by describing the distribution of velocities at 

different scales in the atmosphere.  It turns out that Kolmogorov’s main results could also 

be applied to atmospheric temperature distributions, which are more directly related to 

optical turbulence because of the direct effect that temperature has on index of refraction 

(Andrew and Phillips, pp 48-50). 

 

2.2.2. Random Characterization of Turbulence 

 The temperature of the atmosphere as a function of distance along a vector from a 

point can be thought of as a spatial stochastic process in each of the component vectors 
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with distance as the independent variable.  When the atmosphere is statistically 

homogenous and isotropic, then the stochastic process is statistically identical along any 

vector regardless of starting point or direction (pp. 31-32).   

Let 〈⋅〉  denote ensemble average, or expected value, and T(x) be the temperature 

function, then the structure function under the above assumptions is (p. 28) 

 

2)]()([)( xTrxTrDT −+= , 

 

where r is a radial distance from point x in the atmosphere.  Also, the covariance function 

is given by (p. 24) 

 

])(][)([)( mrxTmxTrBT −+−= , 

 

where m is the mean value for the temperature process T(x).  It turns out that under the 

homogeneity assumption, these functions are related by (p. 28) 

 

)]()0([2)( rBBrD TTT −= , 

 

which allows for measurement of the structure function with sensitive atmospheric 

instruments (p. 50).  The temperature structure constant, CT
2, is determined from (p. 48) 
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where l0 and L0 are the lower and upper limits of the inertial subscale, the distances for 

which the assumptions of homogeneity and isotropy of the stochastic process hold (p. 

45).  Finally, the index-of-refraction structure parameter for optical and near-infrared 

wavelengths can be found (Andrew and Phillips, pp. 49-50) by 
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where P is pressure in millibars and T is temperature in Kelvin.  Cn
2 has units of m-2/3, 

and has a value of about 10-17 or less when turbulence is “weak” and 10-13 or more when 

turbulence is “strong” (p. 51).  Cn
2 is a strongly inverse function of altitude since 

turbulence is typically worse near the ground, becoming more benign with increased 

altitude, and with knowledge of Cn
2 along an optical path, one can completely describe 

the turbulence behavior of that path.  (See sections 4.2.2. and 4.2.3 below.) 

 

2.2.3. Relevant Descriptors 

 There are several statistics that have been developed for describing the turbulence 

for a given optical path, and often Cn
2 figures prominently in them.  One of the more 

common statistics is atmospheric coherence length, r0, which is given by Lukin and 

Fortes (1998) to be: 
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where k is the wave number (k = 2π/λ), Cn
2(x) is the strength of turbulence profile as a 

function of distance x from the aperture along the optical path of length L, and  for 

a plane wave or  for an expanding spherical wave arriving at the aperture (or 

equivalently, a converging spherical wave departing the aperture).  The measure r0 has 

units of meters and represents the limiting performance of an optical system in imaging 

resolution or propagated beam diffraction.  In free space propagation without turbulence, 

the divergence angle of the laser will be approximately λ/D (in radians), where D is the 

diameter of the aperture.  On the other hand, in propagation through a turbulent medium, 

the divergence angle will be approximated by λ/r0, when D > r0 (Andrews & Phillips, p. 

141).  As turbulence increases, r0 decreases, and the propagated beam diverges (without 

adaptive atmospheric compensation), reducing the average power over a given area at the 

target.  A similar measure, the isoplanatic angle, θ0, expresses the angular distance (in 

radians) for which the atmosphere is nearly uniform with the vertex at the target (p. 145).  

This is discussed in more detail in Section 4.2.2. and 4.2.3.   

1=Q

LxQ /1−=

 In addition to calculating the spreading due to turbulence when D > r0, one can 

also estimate the peak intensity of a spot focused at distance L by (from the brightness 

equation in Golnick, 1993, p. 451): 

 22

2
0

4 L
rPI p λ
π

≅ . (2.1)

where Ip represents the peak irradiance point and P is the laser output power uniformly 

illuminating a circular aperture.  As before, without turbulence (and whenever D < r0), Ip 

can be found by substituting D for r0 in Eq. 2.1. 
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 A different metric for turbulence, often used in scaling laws predicting peak 

intensity of a beam, is wavefront error (WFE) and its associated Strehl ratio (denoted S 

with a subscript).  Strehl ratio, for the purpose of laser propagation, is the fraction 

remaining of the undistorted peak intensity of a beam at its target after a given degrading 

effect is applied.  Usually the effects are considered to be independent, thus total Strehl 

ratio is the product of individual contributing Strehl ratios.  For example, there can be a 

Strehl ratio due to turbulence of 0.9, and a Strehl ratio due to absorption of 0.95.  If only 

these two effects are applied to a laser, the final peak intensity of the beam will be 0.9 × 

0.95 = 0.855 of its value without these effects.  WFE gives rise to two different 

components of total Strehl, system and atmospheric.  System WFE is the departure from 

the ideal wavefront at the output aperture that the beam experiences due to an imperfect 

optical system or laser resonator (Tyson and Ulrich, 1993, p. 173).  Whereas, atmospheric 

WFE can be thought of as the imperfections in a wavefront arriving at an aperture from a 

point source at the target plane.  The imperfections are typically measured with respect to 

a spherical wavefront.  We consider spherical wavefronts because laser weapons are 

generally represented as focused on the target plane, which implies a spherical wavefront.     

Let  be the difference between the actual wavefront and the ideal spherical 

wavefront, then the mean square WFE is (p. 173): 

PΦ

( ) ( )222
PPP Φ−Φ=ΔΦ .  Under the 

restriction that a given type of wavefront imperfection is “small,” the Strehl ratio for that 

aberration is derived by Born and Wolf (1999, p. 522): 

 

 ( )2
221 PWFES ΔΦ⎟
⎠
⎞

⎜
⎝
⎛−=
λ
π . (2.2)
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Though do they not specify what the limits in WFE are for the utility of this expression 

(i.e., what “small” is), they use Marechal’s standard that a system is “well corrected” 

when the Strehl ratio is 0.8 or higher.  From Eq. 2.2, then, one can find that this 

corresponds to a root mean square WFE constrained as follows:  λλ 07.014
1 ≅≤ΔΦP  

(p. 528), a very small WFE indeed.  

Tyson and Ulrich (1993, p. 174) take advantage of the “small” wavefront error 

assumption, and the fact that equation Eq. 2.2 is the first two terms of a Maclaurin Series, 

to justify the approximation: 

 

 ( ) ⎟⎟
⎠

⎞
⎜
⎜
⎝

⎛
ΔΦ⎟

⎠
⎞

⎜
⎝
⎛−= 2

22exp PWFES
λ
π . (2.3)

 

These authors suggest that independent sources of WFE can be considered separately 

with this formula, with their Strehl ratios multiplied as above for cumulative Strehl. 

 Fig. 2.1 below compares equations 2.2 and 2.3 with respect to PΔΦ .  Note that 

the graphs diverge at about λ07.0=ΔΦP , and then the source equation 2.2 decreases 

parabolically to negative numbers, which is unphysical since intensity must be positive.  

The approximation equation 2.3 is better behaved and more intuitive (since it remains 

positive and decreasing with PΔΦ ), suggesting perhaps that relaxing the small WFE 

assumption underlying the derivation of Eq. 2.2 would yield an expression that is even 

better approximated by Eq. 2.3.  The point of this discussion is that Eq. 2.3 is often used 
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to represent WFE in scaling law approximations for peak intensity, but appears to be 

inaccurate for λ07.0>ΔΦP . 

 In any case, taking advantage of what Hogge (1974, p. 190) calls the “reciprocity 

of the linear turbulence operator,” we could test the utility of Eq. 2.3 in modeling 

turbulence by using wave-optics to simulate a point source at the target plane propagating 

spherical waves through a turbulent atmosphere to a receiving aperture.  Then WFE could 

be captured at the aperture and applied to an outgoing beam back to the target plane in a 

vacuum propagation.  Repeating the experiment with multiple settings (with replications 

to achieve averaging) and calculating the ratios with their respective diffraction limited 

cases will produce points on the coordinate system in Fig. 2.1 that could be used to 

validate Eq. 2.3. 
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Figure 2.1.  Comparison of wave-front error Strehl approximations. 
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 Finally, much has been written on the turbulence spreading of Gaussian beams.  

The applicability to HEL systems is two-fold:  First, when SSL HEL systems are 

deployed, they very likely will have a Gaussian intensity profile at the aperture.  Second, 

even those systems with more uniform beams (such as some gas-dynamic systems with 

unstable resonators) usually focus the beam, which makes the beam similar to a Gaussian 

in the optical path.  Additionally, considering an ATL scenario when shooting at ground 

targets, the focused beam propagates through the thicker atmosphere (which has the most 

turbulence) when it is in this state.  As such, these results may be useful in applying 

turbulence effects.  A nice feature of Gaussian beams is that beam spreading is directly 

related to Strehl ratio, thus if the beam remains Gaussian near its peak, then the irradiance 

profile near the peak is also specified.  Let W be the Gaussian beam waist at the target 

plane without the effect of turbulence and Wb designate the larger beam waist after 

turbulent spreading.  Tyson and Ulrich (p. 180) say that turbulence Strehl 

2)( bturb WWS = , which in plain words means that pushing down the peak of a Guassian 

beam with constant power requires the beam to spread out. 

Ishimaru (1981) showed that under the short range condition of Zi >> L >> Zc (for 

ATL, typical values are Zi = 120 km, Zc < 100 m, and L = 3 - 25 km) the resultant beam 

waist due to turbulent spreading is given by: 
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Tyson and Ulrich, as well as Andrews and Phillips (p. 147), have developed their own 

expressions for Gaussian beam spreading due to turbulence, and it was difficult to see 

similarities, except for two:  (1) Both of those expressions assume constant Cn
2, meaning 

integral expressions would be needed to accurately determine beam spreading in ATL’s 

case, where Cn
2 will vary along the path; and (2) as with Ishimaru’s method, the ATL 

missions appear to fall into the “short range” or “low turbulence” category in all methods 

except for the most extreme scenarios.  

 

2.2.4. Other Important Literature 

 Fried (1966) conducted significant early work in imaging through turbulence 

regarding the potential utility of short exposures over long exposures with respect to 

image quality, since the time averaged effect of tilt due to turbulence would be 

eliminated.  In particular, when D/r0 ~ 1, his results show that image quality, measured in 

resolution, is primarily degraded by tilt turbulence and that by correcting for tilt alone, 

especially in the near field case, one can recover a large portion of the diffraction limited 

performance.  However, as D/r0 increases beyond 2, less than half of the lost diffraction 

limited performance is achievable with tilt correction alone, and worsening as the ratio 

increases further (e.g., at D/r0 = 4, less than 25% of the lost performance is recoverable 

with tilt correction alone).  The remainder of the diffraction limited performance is only 

recoverable (to some degree) through higher-order adaptive optics correction.  One may 

view laser system performance from the atmospherics standpoint first, that is use r0 as a 

beam spreading parameter, per suggestion in Section 2.2 above.  In this case, Fried 

provides a performance multiplier that adds the effect of aperture size.  Treating r0 as a 
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limiting aperture, Fried’s short exposure near field Strehl for a physical aperture such that 

D/r0 ~ 1 is actually greater than 1!  This result has sometimes been referred to as “super 

resolution” (Goda, 2004), but in reality its performance is less than the diffraction limited 

performance of the physical aperture in a vacuum.  Vernon and St John (2003) take this 

approach when modeling turbulence in SAIC’s High Energy Laser COnsolodated 

Modeling & Engagement Simulation (HELCOMES).  This technique is particularly 

insightful for application to ATL since ATL’s aperture diameter (0.5 m) is on par with r0 

values associated with ATL scenarios in Long (2004a). 

 Many authors have addressed the issue of laser beam spreading due to turbulence.  

Lutomirski and Yura (1971) and Yura (1971) address uniform plane and spherical waves 

propagating from circular apertures, as well as Gaussian beams.  Yura’s approach is 

adopted by Smith (1977) for scaling law development; however, these papers do not 

address the issue of short exposure beam spreading.  Ishimaru (1981), quoted earlier, 

revisited turbulent beam spreading and provides potentially useful relationships, but also 

did not to have address the short exposure issue.  However, for very far propagations, he 

does address the issue of beam spread dependence upon the inner scale of the inertial 

subscale, l0 (described in Section 2.2.2). 

 Valley (1979) showed that short-exposure Strehl is strongly dependent on the 

inner scale value, whereas long-exposure Strehl is not.  The opposite is true for the outer 

scale, L0 (again, see Section 2.2), especially for ATL specifications and scenarios.  He 

also demonstrated some limitations of using wave-optics for evaluating the effect of the 

outer scale.  Fante (1980) demonstrates a method for removing the beam spread due to 

atmospheric tilt alone, and shows that significant improvements in short exposure (or tilt-
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corrected) intensity can be realized when 2 ≤ D/r0 ≤ 5.  Fante (1983) addresses the issue 

of the inner scale on scintillation (which is related to the short exposure of an aberrated 

beam) and finds that the non-zero inner scale values significantly increase the variance of 

the irradiance probability density function (PDF).   Unless the time constants for the 

effect of the inner scale are small, and their effect has a zero mean, the inner scale value 

may be a candidate for inclusion in a scaling law model. 

 

2.3. Thermal Blooming 

2.3.1. Introduction 

 Thermal blooming refers to the self-induced distortion of laser beams propagating 

through the atmosphere caused by the heating of the atmospheric components by the 

beam itself.  Temperature gradients are then created in the atmosphere, from which arise 

refractive index gradients which, as discussed in the turbulence section above, distort the 

beam.  This is a non-linear process since the beam starts undistorted, causes initial 

heating, which distorts the beam.  But the distortion of the beam simultaneously changes 

the dynamics of the atmospheric heating (Smith, 1977), affecting the next stage of beam 

distortion.  If the conditions are sufficiently constant, the beam will pass through this 

transient state and settle into a steady state.  One of the more important conditions 

concerning HEL weapons is wind relative to the optical beam path.  In the presence of a 

nearly constant wind profile (that is non-zero everywhere along the beam path), the 

steady state beam shape has been shown (e.g., Smith, 1977; Gebhardt, 1993; Hogge, 

1974) by both experiment and computer modeling to deform into a crescent shape that 

bends into the wind.  For HEL weapon scenarios, this distorted shape almost always has 
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reduced peak intensity relative to the undistorted beam and it represents a loss of radial 

symmetry associated with un-bloomed beam spots. 

 

2.3.2. Descriptive Equations 

 Since light is a wave phenomenon, the bending a of beam of light can be 

described as the result of a non-uniform retardation of the wavefront of the beam.  For 

example, when a planar wavefront of light impinges on a focusing lens, after passing 

through the lens, its wavefront is no longer planar but has a converging spherical form 

that will focus the beam at the center of that sphere.  What happened?  The focusing lens, 

being thicker in the middle and thinner at its edges, applied a non-uniform retardation of 

the beam resulting in the center portions of the beam having the greatest retardation, 

while the edges of the beam had little retardation—the resulting spherical wavefront 

represents (or one could say “causes”) a focusing of the light. 

 Cooler, denser air is optically thicker than warmer, less dense air—we saw that 

random distribution of temperatures is the cause of optical turbulence.  This temperature-

density concept is also critical for understanding thermal blooming.  Under the non-

restrictive assumption (Gebhart, p. 293) that there is a prevailing wind across HEL beam 

path, the wind will bring cooler air into the beam path, and push warmer air out.  In the 

steady state, then, there is a temperature gradient across the beam path in the wind axis, 

and we can think of this as a lens:   The cooler air retards the wavefront of the laser more 

than the warmer air, so the overall wavefront bends in the direction of the cool side of the 

beam path.  In the cross wind direction, since there is no wind motion in that axis, the 
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temperature profile is generally warmer in the middle than on the edges.  This has the 

effect of a diverging lens, causing the beam to spread in crosswind axis.  

 To show these effects physically, Gebhart (p. 297) assumes geometric optics 

(neglecting the effects of diffraction caused by the aperture and atmospheric lenses) and 

finds that for a Gaussian beam with wind velocity, v, in the positive x direction, the 

blooming phase distortion in the plane transverse to the optical axis (positive z direction) 

is: 
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where ∫ −=
x

dttx
0

2 )exp(2)erf( π  is the error function (MatLab 7.0 user documentation, 

2004), ND is the thermal blooming distortion number (a function of z as defined below), 

and a is the distance from the center of the initial Gaussian beam in the transverse plane 

such that the intensity at that point is 1/e times the peak intensity.  Note in the series 

expansion version of Eq. 2.4 (the second line), that the second term of the expansion 

represents advancement of the wavefront as an increasing function of x, that is the cause 

of the tilting of the beam into the wind.  The third term represents astigmatism:  The 

wavefront is retarded in the y-axis as a function of distance from y = 0.  This accounts for 

beam spreading in the crosswind direction, as discussed above.  The factor ND (p. 299) is 

defined as a product of the collimated beam distortion parameter, NC, and the Fresnel 
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number, NF: FCD NNN π2=  (2.5), where zkaNF
2= , z being the propagation distance, 

and for a Gaussian beam: 

 3
0

2

VaCn
PznN
p

T
C ρπ

α−
=  (2.6)

 

where n0 , ρ, and Cp are the average refractive index prior to heating, density, and specific 

heat of the medium, respectively; TnnT ∂∂= ; α is the absorbance coefficient (in units of 

length-1); P is output power; and V is wind velocity.  This is a scaling parameter, about 

which more will be said later, but note that it combines the effects of many different 

aspects of the scenario into a single parameter. 

 Gebhardt (p. 296) derives a different blooming phase formula than Eq. 2.4 for a 

uniform circular beam and shows the blooming effect to be significantly lower than for a 

comparable Gaussian beam.  Smith shows some experimental data that verifies this; 

however, in neither case is it clear that the beams were considered to have propagated to 

a far-field pattern.  When such is the case, any blooming advantage of a uniform beam 

may be lost since the far-field pattern of a uniform circular beam is the Airy pattern, 

which is very Gaussian-like.  Smith displays uniform and other beam results with respect 

to a parameter containing NC, in spite of the latter’s underlying Gaussian assumption.  To 

do so, a reasonable substitution for a is assumed: the radius of the aperture.   

 

2.3.3. Critical Power 

 One of the more interesting and, from a weapons perspective, important results of 

HEL thermal blooming is that computer experiments substantiated by laboratory results 
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(Smith; Hogge, p. 224) show that for a given scenario, the steady state peak intensity of 

the laser spot at the target will rise as a function of power level until a certain power 

value is reached called the critical power, Pc.   At power levels greater than Pc, the peak 

intensity is a decreasing function power.   The value of Pc varies with the scenario, but 

for a strongly focused Gaussian beam with low atmospheric absorbance, Pc can be 

estimated when the other parameters of the scenario are known and ND from Eq. 2.5 

above is set equal to 4π (Gebhardt, p. 301).  Smith gives a normalized approximate 

relationship for this phenomenon: 

 

( )20 1 c

c
pcp PP

PPII
+

≅  

 

where Ip is the peak intensity of a bloomed beam at power P, and Ipc0 is the peak intensity 

for an unbloomed beam with power Pc.  This function is graphed (solid line) in Figure 

2.2.  The axes are relative intensity and relative power, of course.  

When Ip is the measure of a weapon’s performance, Pc is an important limiting 

factor, and actions are usually undertaken to increase Pc to improve weapon performance 

(e.g., different wavelength, different engagement geometry).  The proposal to use PIB as 

an alternative to Ip as the primary laser performance metric can be understood in this 

light.  If a plot of Ip vs. P for a specific weapon in a specific scenario were included, and 

we overlaid a plot of PIB for a given bucket size, the power at which the PIB plot peaks 

will necessarily be greater than Pc. 
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Figure 2.2.  Relationship of peak intensity to critical power. 

 

2.3.4. Interaction with Turbulence and Jitter 

 Not surprisingly, it turns out that focused beams suffer worse thermal blooming 

than collimated beams.  This is because the intensity gradient can tend to get very large in 

the optical path as the target plane is approached, especially if atmospheric turbulence is 

relatively low, thus allowing the beam to achieve near-diffraction limited spot sizes in the 

absence of thermal blooming.  As we will discuss with more detail in the scaling law 

section below, in a thermal blooming regime, near diffraction-limited beam sizes can 

experience severe blooming distortion due to the large laser induced temperature 

gradients, erasing any peak intensity gains that came from the “quiet” atmosphere.  On 

the other hand, should some turbulence be present, the effective focusing of the beam is 

reduced, which results in a smaller thermal blooming effect than in the quiet atmosphere 

case.  For high beam jitter, in some cases we can treat it similarly to turbulence in that in 
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a time average sense, it merely spreads the beam.  In a recent simulation study of ATL 

scenarios using wave-optics code, we have seen that for a constant thermal blooming 

distortion number, increased turbulence actually increased the peak intensity (Long, 

2004a).  Similarly, MIT’s thermal blooming lab showed that adding high-bandwidth 

transverse jitter and/or artificially spreading the beam by defocusing likewise can 

increase peak intensity (Edwards, 2004).  

Smith (1977) and Tyson and Ulrich (1993, p. 198) noted this interactive effect 

and noted that the difficulty of the interaction problem is dependent upon the relative 

bandwidths of the effects.  Sticking with turbulence alone for clarity, the bandwidth 

(BW) of turbulence is related to the minimum amount of time Δt it takes for the 

atmosphere along a ray in the beam path to be independent of the atmosphere along that 

same path at time Δt (either due to wind, beam slewing/motion, or both).  At high BW, 

this time is “small” (thus placing a greater demand on the tracking system, etc.).  The 

thermal blooming BW is related to the amount of time the propagated beam takes to 

achieve its steady state shape.  Again for clarity, when the thermal blooming BW is high, 

this settling time is “small”.   Smith points out that when BWturb >> BWbloom, the effects 

can be handled separately:  apply turbulence first to spread the beam, then apply thermal 

blooming treatment.  In the opposite case, apply blooming first, then spread the resulting 

beam in accordance with turbulence.  In the case where BWturb ≅ BWbloom, Smith flatly 

states that “no analytical treatment is possible”.   

The latter may present a worthy, perhaps insuperable, challenge and it is unclear 

how the circumstance applies to the present proposal.  In the ATL scenario studies, we 

found that the thermal blooming transient takes on the order of 0.25 to 0.5 seconds to 
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settle, the longer times needed for the milder thermal blooming cases (lower power, 

shorter distances, ect.).  Gebhardt quoted a study of horizontal (apparently ground level) 

propagation with a particularly challenging thermal blooming assumption:  a stagnant air 

mass at some point along the beam path.  In this case, the thermal blooming settling times 

were between 0.1 and 0.3 seconds.  These times seem long, but it is not certain at this 

point that they are long compared to atmospheric turbulence refresh times.  Gebhardt 

(1976) suggests that usually turbulence bandwidth, which under Taylor’s frozen flow 

hypothesis (Roggemann and Welsh, 1996, p. 65) is primarily driven by effective wind 

(either due to real wind or beam motion), is sufficiently greater than blooming bandwidth 

to allow application of the BWturb >> BWbloom rule above.  However, Hogge (p. 231-3) 

has shown that for focused beams, such as ATL is likely to use, most of the blooming 

effect occurs near the target plane.  Since ATL targets are likely to include slow moving 

and stationary ground targets, beam motion at this critical range may be limited.  When 

the wind velocity perpendicular to the optical path is also small (though not necessarily 

small enough to violate Taylor’s hypothesis), Gebhardt’s suggestion regarding relative 

bandwidth may not apply.  On the other hand, Andrew, Phillips, and Hopen (2001, p. 

116) say that as the “strength of turbulence increases, the power in the [temporal 

irradiance] spectrum shifts to higher frequencies,” which suggests an increase in BWturb.  

Since turbulence is highest near the ground, this offsets the above concern to an extent, 

but it doesn’t resolve it. 
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2.4. Wave-Optics Modeling 

2.4.1. Introduction 

 Given the high dimensionality of the HEL turbulence thermal blooming 

propagation problem, one successful approach to predicting performance has been to 

mathematically simulate the entire system in the time domain with as few assumptions as 

possible.  The core of this approach is to treat light propagation, not geometrically, but 

with a technique that accurately represents diffraction due to its wave nature: the Fresnel 

approximation.  The atmosphere is represented as a sequence of thin planar irregular 

lenses, called phase screens, that represent turbulence or an air mass with which the 

simulated laser beam can also interact to represent thermal blooming.  This so called 

wave-optics modeling approach gives accurate results (Smith; Gebhardt, p. 302) but are 

difficult to set up for a scenario and are very computationally intensive. 

 

2.4.2. The Fresnel Approximation 

 The Fresnel approximation refers to a simplification of the Huygens-Fresnel 

principle of light propagation.  The latter, embodied in the theories of Kirchoff and later 

of Rayleigh-Sommerfeld (Goodman, 1996, p. 35), treats the amplitude of the light wave 

as a scalar value rather than a vector whose coordinates can interact with each other via 

the environment.  Scalar theory can be used in vector representations of light when the 

two polarization coordinates are assumed not to interact by treating each coordinate with 

a separate scalar representation (Born and Wolf, 1999, p. 430).  The Huygens-Fresnel 

principal says that light can be thought of as a wavefront along which there are infinitely 

many points that re-emit the wave as a sphere.  The exterior locus of the wavefronts of 
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these secondary spherical wavelets after a period of time t describes the result of the 

original wave after propagating for time t.  The conditions for the Huygens-Fresnel 

principal to be valid are that (1) an aperture is large compared to the optical wavelength 

and (2) observation of the radiation takes place “far” from the aperture (Goodman, p. 35), 

and both are easily met in HEL weapon scenarios.   

 The first Rayleigh-Sommerfeld theory of the Huygens-Fresnel principle is given 

as follows (Goodman, p. 66): 

 

 ηξηξ
λ

dd
r

ikrU
i
zyxU ∫∫
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= 2
)exp(),(),( (2.7)

 

where U(ξ,η) represents the complex electric field at the aperture Σ (an area in the 

starting plane), U(x,y) represents the complex electric field at a parallel plane (the plane 

we’re propagating to) at distance z from Σ, and 1−=i .  The double integral represents 

the adding up of the wavelets emanating from each point in the aperture as they intersect 

(and interfere) at a point (x,y).  The value r is a distance function between the points on 

the two planes: 

222 )()( ηξ −+−+= yxzr . 

 

To get the Fresnel approximation, the distance function r in the denominator of 

Eq. 2.7 can be approximated by r ≅ z.  However, that is inadequate for the argument of 

the exponential function in the numerator.  For that, a few terms of the binomial 

expansion are necessary (p. 67):  
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Making these substitutions into Eq. 2.7, and executing the squares in the binomial 

expansion results in (p. 67): 
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Eq. 2.9, the Fresnel approximation, tells us that when the substitutions made 

above are valid, U(x,y) is a function of the 2-dimensional Fourier transform of the 

expression in braces, {}.  The infinite integration limits are allowed when the aperture is 

defined within U(ξ,η).  The assumption needed for the Fresnel approximation, in addition 

to the Huygens-Fresnel principle assumptions, requires that the rays between points in 

adjacent propagation planes make small angles with respect to the optical axis 

(Goodman, p 72), which is also generally valid for HEL scenarios. 

⋅

 Fourier transforms, especially difficult ones, are often calculated using the fast 

Fourier transform (FFT) algorithm which is a numerical technique that requires sampling 

the complex field in the aperture plane at an appropriate spatial rate.  If that rate is too 

low, anomalous results will occur; if too high, accuracy will not be hurt, but run time will 

be unnecessarily long.  
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2.4.3. Phase Screens 

 The propagation using the Fresnel approximation (or Fresnel propagation) 

represents a vacuum propagation between two planes.  To utilize the power of Fresnel 

propagation for modeling turbulence and/or thermal blooming, the HEL propagation path 

is partitioned and the phase delay for each partition is represented by a thin irregular lens 

that applies all the phase delay for that partition at a single distance within that partition’s 

length.  This thin lens is called a phase screen.  For modeling turbulence, the construction 

of a phase screen is a random process that is in keeping with the spatial correlation 

statistics for the atmosphere in that partition as discussed in Section 2.2.3.  One method 

for building phase screens for turbulence is discussed in Roggemann and Welch (pp. 104-

119).  Taylor’s frozen flow hypothesis (p. 65) states that for a given beam path the 

change in phase attributable to a partition of the beam path as a function of time is almost 

always dominated by wind for atmospheric propagations, and not by local changes in a 

turbulence pattern—that is, the turbulence moves across the beam faster than it changes 

within the beam.  This assumption allows the use of large phase screens that are scanned 

across the beam path at a velocity representing local wind.  There are at least two 

important things to remember regarding phase screens:  (1) They are the result of a 

random process, so the laser spot determined by single run of a wave-optics code that 

models turbulence in this way is only a single sample of a statistical beam.  Many runs 

will be needed to achieve a good estimate the statistical beam; and (2) since atmospheric 

turbulence will be correlated in the optical (z-) axis, having the screens too close to each 

other will require additional care in constructing them to take that correlation into 

account.  To avoid computational problems associated with issue 2 above, one can 
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merely ensure the phase screens are far enough apart that they are effectively 

uncorrelated, assuming the impact on accuracy is not too negative. 

 To model turbulence and thermal blooming simultaneously, it is fairly 

straightforward to add additional thermal blooming phase screens along with the 

turbulence phase screens.  This is the method employed by Link (2003a) in SAIC’s 

Atmospheric Compensation Simulation (ACS), a prominent wave-optics code used in 

some DoD studies, and Smith (1977) also refers to several studies using this approach.  In 

general, to reduce the number of Fourier transforms to compute in ACS, Link co-locates 

turbulence and thermal blooming phase screens in the simulation, computes their effects 

on the beam independently, adds them for their total phase delay, and propagates to the 

next screen location (2003b).  The difference between thermal blooming and turbulence 

phase screens is that the thermal blooming screens change as a function of heat 

absorption from the beam that impinges upon it.  The turbulence phase screens only 

change as a result of wind and the random turbulent process, and act upon but do not 

interact with the laser beam.   

 As mentioned, most HEL scenarios will have wind-dominated thermal blooming 

effects, so the thermal blooming phase screen will move in time with respect to the beam.  

According to Smith, and also Hogge (p. 215), atmospheric heating of the molecules 

translates to density changes that propagate acoustically (that is, at the local speed of 

sound) to the neighboring atmosphere.  At the beginning of the simulation, the thermal 

blooming phase screen is uniform but still moving with the wind.  Then as heating 

begins, the expansion of density waves is modeled as radial with respect to the heated 

point, but that expansion itself is moved away from the beam path because of the wind.  
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If the wind velocity is high enough, the phase screen lens will approach a steady state 

after some amount of simulated time for that portion of the beam path. 

  

2.5. Scaling Law Modeling 

2.5.1. History and Use 

 Scaling laws attempt to relate the variability in the aberration process to as few 

parameters as possible, often only one, which is itself a function of the scenario settings.  

Given such a parameter, the concept is that whatever scenario settings cause that 

parameter to be a certain value, the outcome of that scenario will be the same (or in the 

case of a stochastic system, drawn from the same distribution).  In this section, we detail 

the method expounded by Smith (1977).  Another common method due to Breaux will be 

important to this research as well. 

 Smith detailed the development of the most commonly used scaling law 

parameter for thermal blooming: the thermal blooming distortion number, usually 

denoted N.  Different methods for calculating N have been developed over the last three 

decades, but Smith’s derivation remains foundational.  His approach uses the eikonal, the 

geometric optics equation of light rays in media with variable index of refractions (Born 

and Wolf, p119), and conservation of energy to describe the steady state result of light 

propagating through an absorbing medium.  Of Smith’s perturbation analyses, the most 

relevant to this study were those assuming convection, i.e., wind.  In this case, and under 

the assumption that the beginning irradiance profile is a collimated infinite Gaussian, the 

relationship between final and initial irradiance patterns is given by 
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when αz << 1 and where Nc is defined in Eq. 2.6 above.  Note that as described in Section 

2.3, all of the scenario settings have been rolled into Nc with the single exception of a, 

which is the 1/e radius of the initial beam, that is the distance from the peak irradiance to 

the circular contour with irradiance of 1/e × peak irradiance.  These are a rather limiting 

set of assumptions; therefore, Smith derives additional multipliers to calculate the overall 

thermal blooming distortion number N for several cases. 

 Smith’s correction factor for focusing (and apparently for diffraction) is given by  
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where ai is the initial beam waist radius and af is the final beam waist radius (under no 

thermal blooming conditions).  Gebhardt (1993, p. 301) provides a different form for this 

factor that uses the Fresnel number, but appears to assume the geometric focus is at the 

target.  Smith’s method is more general (though it requires a little more work for the 

calculation of af).  This is essentially a strength of focusing term and was found to be 

useful in predicting performance under defocus in Chapter 3 with a different N 

formulation.. 

 Smith provides a correction factor for slewing, though it appears that the paper’s 

perspective on slewing was the ground-to-air mission.  For ATL, aircraft velocity 
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dominates the wind for a significant portion of the beam path near the aperture, damping 

thermal blooming.  Near the target, ground wind and target velocity (which is related to 

slew) will likely be the driving factors.  Though its applicability to ATL is uncertain, the 

N multiplier for slew is 
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where vi is the beam slew velocity at the aperture and vf is the beam slew velocity at the 

target.  Finally, Smith provides the multiplier for larger αz values: 
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Then, the composite thermal blooming distortion number is given by . gvfc NNNNN =

 While Eq. 2.10 and its precursors give a description of the final irradiance field 

when given an initial Gaussian irradiance field, the thermal blooming distortion number 

as described above has often been used as a regression variable for curve fitting.  

Gebhardt (1976) and Smith both show N to be an explanatory variable for thermal 

blooming Strehl, STB, applied to collimated Gaussians by the relationship: 

 

. 20625.01
1

N
STB +

=  (2.12)
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This model projects that critical power, PC, occurs when N = 4.  However, the 

relationship is not adequate for a collimated beam with a uniform irradiance profile (a 

tophat beam), which is better explained by the relationship (Gebhardt, 1993): 

 

 22.109.01
1

N
STB +

= , (2.13)

 

which projects PC occurs at N = 25.  This means comparing a uniform tophat beam with a 

Gaussian beam having the same power and radius (as defined for each beam type), the 

uniform beam as will experience less thermal blooming distortion than the Gaussian, at 

least under collimated propagation to the near field.   

There are minor discrepancies in the literature that have not been ironed out. 

(Smith reports a different tophat beam Strehl relationship to N than Gebhardt.)  Also, it 

seems Smith’s purpose for the factor modifications to NC are to rescale any given 

Gaussian scenario such that Eq.2.12 could be applied.  However, the development above 

appears inadequate in the air-to-ground case.  Further, equations 2.12 and 2.13 could be 

considered extreme points on a continuum with respect to a Gaussian being clipped by an 

aperture.  The infinite Gaussian representing no clipping and the tophat, which can be 

considered the limit of the Gaussian as the aperture radius approaches zero.  This 

continuum might provide a better rescaling reference than 2.12 alone.  

 

2.5.2. Other Important Literature 

 Smith (1977), referenced extensively above, and Gebhardt (1993, 1976), also 

referenced above, provide much of the body of knowledge for thermal blooming scaling 
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law utility as an alternative to wave-optics simulation.  The underlying approach is to 

treat the optical propagation geometrically, then develop perturbation equations for 

optical interaction with the medium using fluid dynamics.  The resulting perturbation 

equations are dependent on the irradiance field at the aperture and are particularly 

tractable when the initial irradiance profile is an infinite Gaussian.  Under that 

assumption, a single constant emerges from this process that is a function of all the input 

variables and is called the thermal blooming distortion number, N.  N, along with a 

functional form specific to the Gaussian assumption, predict the resulting thermal 

blooming effect.  Diffraction effects, focus and slewing effects, and turbulence and jitter 

effects are applied after the fact.  However, in order to develop scaling laws for peak 

intensity as well as application to other initial irradiance profiles, curve fitting techniques 

are used based on laboratory or wave-optics experiments. 

 Breaux (1979) and Breaux, Evers, Sepuche, and Whitney (1979) have developed 

what they call an algebraic predictive approach to thermal blooming for the purpose of 

systems analysis.  Leveraging what they call the phase integral, and also employing some 

categorical variables for different initial beam shapes (derived apparently with some 

curve fitting techniques), their formula is prioritized for giving the peak intensity at the 

target.  No mention was found of turbulence, but presumably turbulence effects could be 

added prior to their approach, since it is a linear effect.  The HELCOMES scaling law 

model produced by SAIC uses the Breaux method (Vernon, 2003)  

 Recently, efforts have progressed in developing probability density functions for 

turbulence distorted irradiance patterns.  Al-Habash, Andrews, and Phillips (2001) have 

developed what they have termed the Gamma-Gamma distribution for predicting the 

2-32 



 

moments of the irradiance profile.  An attractive feature of this distribution, besides the 

fact that it performs well when compared to published data, is that it lends itself to 

parameter estimation, whereas the previous state of the art method did not.  The purpose 

of irradiance PDF’s appears to be in support of optical communications to enable robust 

system specification and predict signal fade statistics.  However, this work should be 

translatable to predicting HEL irradiance statistics under turbulence (if existing theory 

isn’t adequate). 

 

2.6. Systems Analysis and Modeling of HEL Systems 

2.6.1. Major Assumptions 

 There are many problems with designing, utilizing, and analyzing complex optical 

systems.  Typically, in order to analyze one aspect of an overall system, assumptions 

about other aspects of the system must be made that will either be validated later or, if 

invalid, can be adjusted for without having to completely re-accomplish the analysis.   

For instance, under thermal blooming conditions, we saw that the peak of the beam is 

diverted from the optical axis.  At this time, it is not clear how the peak of such a beam 

will be pointed at the aimpoint at the target.  This is because the thermal blooming works 

both ways: distorting the outgoing beam as evidenced by the irradiance pattern at the 

target, and also distorting the image of the target (and any image of the laser spot) as seen 

by an aperture-sharing tracking/pointing sensor.   

While there are some engineering challenges to overcome regarding beam 

pointing under such conditions, the community assumes that the challenges can and will 

be met.  As such, we will allow the assumption that the beam in a future HEL weapon 
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operating under thermal blooming conditions can be pointed (at least at low bandwidth) 

at any desired aimpoint on a target under track (within the limits of the tracking 

bandwidth).  With this assumption, we are alleviated from the need to predict the 

displacement of the beam peak at the target plane resulting from thermal blooming, and 

can concentrate on the shape or other distributional properties that are relevant. 

Another major assumption has to do with tracking, or high bandwidth tilt 

correction.  Even though we assume that only the time-averaged beam can be pointed, we 

assume that the time-averaged irradiance builds up under conditions that some amount of 

overall tilt caused by atmospheric turbulence is removed by a fast steering mirror, or 

something similar, inside a closed-loop system that is tracking the target.  Residual tilt, 

that which the tracking system did not compensate for, between the aimpoint and the 

laser beam will be considered jitter that is high in bandwidth relative to the thermal 

blooming phenomenon that, therefore, effectively spreads the beam prior to blooming 

onset. 

 

2.6.2. Scenario Parameters 

Several mentions are made in this dissertation of the scenario settings.  Our desire 

is to build relationships between these settings and HEL performance that allow the latter 

to be evaluated in a time period that is fast compared to using wave-optics.  In particular, 

the performance we want to predict is the peak intensity and the circular PIB as a 

function of bucket radius.  Table 2.1 provides a partial list of parameters that will be 

important for modeling HEL systems in the context of trade studies and other decision 

analyses.  Note: “n.d.” stands for non-dimensional. 
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Table 2.1.  Parameters of interest for HEL systems analysis 

 Parameter Symbol Units Description and Importance 

1. Output Power P W Energy deposited on target scales linearly 

with P until thermal blooming onset. 

2. Aperture size, 

obscuration 

a, % m, n.d. Aperture diameter is a crucial parameter 

determining limiting performance and 

thermal blooming.  Central obscuration is 

single axis percent of diameter. 

3. Turbulence Cn
2, r0, 

θ0 

m-2/3, m, 

rad 

Turbulence spreads the beam, reducing 

peak intensity.  Should look at multiple 

strengths.  Second and third measures are 

derivative of Cn
2. 

4.  Absorption α m-1 Reduces energy reaching target plan and 

results in atmospheric heating that 

underlies thermal blooming. 

5. Wavelength λ m Affects diffraction, but also is a 

determinant of absorption strength. 

6. Range z m Peak intensity falls of at as the square of 

the range in the diffraction limit. 

7. Focusing F m Distance at which geometric focus is set—

often but not always at target plane 

8. Residual jitter θj μm High bandwidth angular motion of the due 

to undamped/uncompensated platform 

vibration effects and the remaining portion 

of the atmospheric tilt jitter beyond that 

removed by the tracking loop  
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Table 2.1 (cont).  Parameters of interest for HEL systems analysis 

 Parameter Symbol Units Description and Importance 

9. Initial 

irradiance 

profile, 

truncation 

type, A n.d., n.d. Top hat, Gaussian, apodized Gaussian; the 

truncation ratio is the radius of the aperture  

in units of 1/e radii of the underlying 

Gaussian irradiance surface 

10.  Available 

dwell time 

tfire sec Includes magazine and duty cycle (if 

cooling between shots is required) 

11. Target 

vulnerability 

parameters 

Tf, TE, 

abucket 

J/m2, J, 

m 

Fluence threshold (for fluence kill), Energy 

threshold (for energy kill), aimpoint 

geometry (plan for circle of some radius).  

Cooling/ heat dissipation effects (energy 

threshold as function of dwell time) 

12. System WFE ω rad The minimum root mean square difference 

between the wavefront at the aperture and a 

perfect sphere with radius F 

13. Strehl S n.d. Fraction of peak intensity remaining after 

applying an aberrating effect to a beam.   

14. Thermal 

blooming 

N n.d. A roll-up of many of the above parameters-

--used as a scaling variable. 

15.  Power-to-

weight ratio 

P/w W/kg Required knowledge for trade & 

architecture studies 

14.  Volume-to-

weight ratio 

V/w m3/kg Required knowledge for trade & 

architecture studies 

 

 While the table above describes many of the parameters that are needed to 

describe a scenario, Table 2.2 gives some potential results needed to score the 

performance of a proposed system in that scenario.  The first two entries are useful for 

comparing two different systems with each other in pure performance at the target plane.    

The last three bring target vulnerability into the problem.  Valid target vulnerability 
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assessments are extremely important in system selection and design because it allows the 

examination of competing systems in simulated combat environments.  We look at 

vulnerability issues next. 

  

Table 2.2.  Measures of performance for HEL systems analysis 

 Measure Symbol Unit Description and Importance 

1. Peak intensity Ip W/m2 The time averaged maximum of an 

irradiance profile 

2.  PIB P(abucket) W The time averaged power circumscribed by 

a circle of radius abucket at the target plane. 

3.  Probability of 

kill 

Pk % Chance of single engagement success.  

Increasing function of dwell time as 

irradiance/energy application cumulates 

toward the kill threshold.  Possibility of 

distributional representation. 

4. Dwell time to 

get desired Pk 

tdwell(Pk) sec Inverse of above description.  Also requires 

vulnerability thresholds from the JMEMS 

community. 

5. Stand off 

range 

z m A function of system description, dwell time 

available, and target vulnerability.  The 

farther the target, the slower irradiance/ 

energy cumulates toward the kill threshold.  

However, long standoff ranges improve the 

possibility of covert operations. 

 

 

2.6.3. Target Vulnerability Issues 

 The U.S. military uses Joint Munitions Effectiveness Manuals (JMEMs) as a 

guide for weapons employment in wartime operations.  Effectiveness is often couched in 
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terms of Pk for a given engagement between a specific munition and a specific target 

type, and these assessments are developed (in part) upon munitions testing and years of 

experience.  The drive to develop similar vulnerability assessments is gathering steam; 

for example, Williams (2004) discussed desired “DE weapon data in JMEM” at  

the Aug 04 Directed Energy Test and Evaluation Conference.  Operational testers need 

operational criteria, and developing those for directed energy weapons is an important 

challenge. 

 It is common to limit the discussion of DE effectiveness to performance in terms 

of laser spot peak intensity at the target plane.  While this is certainly an important 

performance metric—in that it is relatively easy to calculate and is correlated with other 

metrics such as PIB—it is important that the vulnerability community not become 

unnecessarily constrained to using peak intensity alone.  As detailed elsewhere in this 

dissertation, the notion of a peak fluence kill criteria (peak intensity integrated over dwell 

time) has some counter intuitive implications for a target whose failure mode is based 

upon heating a component until structural failure occurs.  In the latter case, total energy 

absorbed in a defined area bucket is likely to have more correlation to Pk, than peak 

fluence.  One could call the former “energy in the bucket,” or EIB, which is PIB 

integrated over dwell time. 

 On the other hand, if the perception exists that EIB performance is not available 

by fast running models, the motivation of the JMEMs community to develop those 

vulnerability data (in spite of potentially better Pk correlation) could be thwarted.  One of 

the goals of this research is to develop just such models with supporting theory so the 
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vulnerability community will not be constrained by standard performance comparison 

practices, if not actual modeling challenges in the DE community. 

 Of course an EIB threshold concept presents additional challenges to the 

vulnerability modelers, as well.  The size of the bucket is a free parameter that either 

must be fixed to maximize Pk correlation to dwell time, or allowed to float resulting in a 

multivariate Pk function.  It may be difficult to imagine the latter as a JMEM product, and 

determining the best bucket size for each target (not to mention the multiple aimpoints of 

each target) may increase the amount of vulnerability information needed, which can be 

expensive to gather.  As such, detailed modeling and simulation of laser-spot/target 

interactions could be leveraged to supplement empirical vulnerability data.  

 Another issue affecting JMEMs analysis is heat dissipation.  Given that heating 

energy absorbed by the target at the beginning of an engagement will dissipate through 

dispersion or cooling (at least to some extent) throughout the rest of the engagement, 

there may be an additional time component to Pk determination besides the time factor in 

fluence or energy accumulation.  For example in engagement 1, if a given energy 

threshold TE is reached in x seconds, let the outcome be Pk
(1)(x), where the superscript 1 is 

the engagement number.  However, in engagement 2 where it takes 2x seconds to reach 

TE, if dissipation has been significant during the engagement, then it is likely that 

Pk
(2)(2x) < Pk

(1)(x), even though they reached the same threshold TE.  This kind of target 

characterization would be useful, especially for the dense target environment where it is 

desirable to minimize the total dwell time across all targets. 

 Finally, some of these Pk(x) issues are moot when the concept of operations 

depends on observation of secondary effects (e.g., secondary explosion, halt of operation) 
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for determining when/whether the kill occurred.  However, even in this paradigm, it is 

nonetheless desirable to know ahead of time approximately how long it will take to 

achieve the secondary effect.  This is true for both mission planning models and for 

systems analysis and wargaming models. 

 

 



 

3.  Characterizing Defocus as Means to Improve No-Turbulence ATG COIL 

Performance 

 

3.1. Introduction 

The Department of Defense is developing a concept demonstrator of a high 

energy laser (HEL) air-to-ground weapon called the Airborne Tactical Laser (ATL).  The 

ATL is being constructed with a chemical oxygen iodine laser (COIL), which operates at 

wavelength of 1.315 μm.  Unfortunately, although COIL devices can generate high laser 

powers for propagation, 1.315 μm light is readily absorbed by any water vapor in the 

atmospheric path.  This absorption reduces the laser power that reaches the target, and if 

the atmospheric heating that accompanies the absorption is severe enough, the beam will 

also become distorted by resulting air density fluctuations in the optical path in a process 

called thermal blooming.  Thermal blooming distortion usually reduces the peak 

irradiance of the laser spot at the target.  One possibility for mitigating this effect of 

thermal blooming for a given engagement scenario is to focus the beam at a point beyond 

the target during propagation rather than directly at the target.  When thermal blooming is 

a significant effect, the marginal reduction in the thermal blooming distortion is often a 

stronger function of relative defocus than is the defocusing effect itself on peak irradiance 

in the absence of absorption.  When this is the case, peak irradiance of the laser spot at 

the target will rise, then crest, and then fall as a function of relative defocus.  Thus, in 

many thermal blooming conditions, an appropriate amount of defocus should improve the 

overall peak irradiance at the target over the focused case. 

 Defocus has been known for some time to be a primary contributor to correction 

for thermal blooming in the presence of convection [Bradley and Herrmann, 1974; Kanev 
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et al, 1998].  Typically defocus is discussed as a portion of the optical wavefront 

correction.  Wavefront correction implies that wavefront aberrations near the transmitting 

aperture are the subject interest in those articles, since phase correction is less effective as 

the aberrations occur at increasing distance from the aperture.  In the air-to-ground case, 

however, most of the thermal blooming aberration occurs far from the aperture since the 

weapon platform is moving at aircraft velocities (high effective wind velocities reduce 

thermal blooming near the aperture) in less absorptive air at altitude, and the target on the 

ground is stationary in our case, though subject to wind, and in a more absorptive 

atmosphere.  In view of this, we find it valid to think of defocus not as a wavefront 

correction, but as a method to reduce the thermal blooming distortion number, ND, as 

compared to the focused case, with the resulting improvement in the Strehl ratio due to 

thermal blooming.   

 Further, it would be useful to know the conditions under which defocusing the 

beam will be beneficial to increasing peak irradiance of the laser spot on target, and when 

these conditions are met, knowledge of the optimal defocus distance, as well as the 

expected peak irradiance itself will be important.  Not surprisingly, these results are 

highly multivariate functions of the engagement scenario, depending on, for example, 

atmospheric absorbance and scatter, optical path wind profile, laser power and beam 

profile, aperture specifications, range to target, and strength of turbulence.  Wave optics 

simulations that account for these variables have been available for many years to study 

thermal blooming and other atmospheric effects.  For this study, we are using Science 

Applications International Corporation’s (SAIC’s) Atmospheric Compensation 

Simulation (ACS).  ACS is a Fortran-based code written and maintained by Donald Link 
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[2005] that can run on UNIX, LINUX, or WINDOWS platforms.  The scenario and the 

weapon systems parameters are read by ACS from a text file, and in addition to these 

settings, many parameters have to be established including numbers and resolution of 

phase screens, number of replications to average, simulation time step, dwell time, and 

delay before gathering statistics.  Output files include the irradiance profiles at the target 

with and without atmospheric distortions, and summary statistics for the engagement.   

 The important finding for this chapter is that all operating conditions studied 

herein benefited in terms of peak irradiance from having some amount of defocus.  Since 

operating with a focused beam is an arbitrary decision (at least in the presence of thermal 

blooming), it should be relatively inexpensive to add defocusing capability to existing 

designs or operating procedures.  Also, since there are other effects that may cause beam 

spreading in ATL scenarios, such as diffraction due to aerosols [Sadot et al. 1994] or 

aero-optic effects at the beam turret, we may find that weapons operated at thermal 

blooming wavelengths are not negatively impacted by these phenomena if the spreading 

effects are no larger than the spreading associated with optimal defocus.  On the other 

hand, we note that time-averaged spreading due to turbulence does not always mitigate 

the thermal blooming effect, and often worsens it.   

 To illustrate these findings, the Breaux thermal blooming distortion number (ND) 

is reviewed and a baseline scenario is defined.  We then examine the sensitivity of system 

performance in many dimensions of the scenario which shows how much defocus is 

advisable and how much improvement might be gained.  Finally, we present a 

modification to the Breaux ND that makes defocus accessible as an added feature in 

scaling laws that use Breaux ND.   
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3.2. Thermal Blooming Distortion Number 

 Historically, the effect of thermal blooming has been discussed with respect to the 

thermal blooming distortion number, ND.  ND is designed to be a scaling variable that is 

correlated to blooming effect and which relates the effect of engagement scenario 

parameters to each other.  For example, according to the ND formula [see (3.1) below], 

the effect of doubling the wind (which reduces ND), is the same as halving the power.  

There have been prominent scaling laws relating ND to peak irradiance at the target plane 

that have been given by Smith [1977], Gebhardt [1990], and Breaux [1979].  These relate 

ND to thermal blooming Strehl ratio, STB—the ratio of peak irradiance with thermal 

blooming to peak irradiance with no thermal blooming (but including power loss due to 

absorption)—which is a decreasing function of ND.   

 Origination of ND is often attributed to Bradley and Herrmann [1974], though 

Smith and Gebhardt [1971] had a similar construct.  It was cast into integral form by 

Breaux [1979] among others (e.g., Magee et al. [2005]), and Breaux’s was modified by 

St. John et al. [2003] to explicitly include effective wind velocity (VE) in the integrand 

rather than merely a scaling factor to account for slewing.  St. John et al. also moved 

absorption coefficient (αabs) and temperature (T) under the integral since those will vary 

with altitude, an important dimension in the ATL case.  Starting with Bradley and 

Hermann and leveraging the others’ developments, formulation for ND used in our 

research, then, is as follows: 
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where k is the wave number, P is laser power, T0 is a temperature baseline (300 K, for 

this research), Tn ∂∂ is the rate of change refractive index with respect to local 

temperature, ρ is air density, cP is the specific heat of air, n0 is the unperturbed refractive 

index of air, and Rtarget is the distance from the aperture to the target plane.  The 

integration proceeds from the aperture to the target and, in addition to those functions 

mentioned earlier, the integrand consists of these functions of position along the optical 

path:  is the ray-optics radius of the beam, s is a specialized function developed by 

Breaux [1979] that contains the spread of the beam due to diffraction and beam quality 

effects as well as an estimate of the spread due to blooming (the latter added to improve 

correlation of his scaling law), and τ is the transmission.  St. John et al. added turbulence 

and other linear effects to s in their modeling.  Note in Eq. 3.1 that the contribution of 

each portion of the beam to ND is inversely related to the beam size at that point.  

However, Breaux also recommends weighting each beam position by the proportion of 

the path remaining to the target (i.e., path leverage), hence the 

geoma

( )targetRr−1  in the 

numerator.  Because of this as well as the inclusion of s, we will refer to Eq. 3.1 as the 

Breaux ND formulation.  We note that Bradley and Hermann rejected path weighting by 

leverage and beam size since those tend to cancel each other out in the focused case; this 

reasoning is superseded by inclusion of Breaux’s spreading term. 
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 We follow St. John et al. as well as Magee et al. in modeling the transmission 

function in Eq. 3.1 as follows: 
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where αscat is the scattering coefficient. 

 The construction of Eq. 3.1 suggests that it could be applied to defocused beams 

by modifying the beam size function, , to something other than the target-focused 

case.  As we will show, however, it is not so simple.  The difficulty lies in the special 

spreading function s, the estimated blooming portion of which appears to have been 

developed for the focused case.  As a result, s dominates  in the root-sum-squared 

(RSS) under the integral near the target for the defocused cases; this results in little 

change in calculated ND as a function of defocus.  Since wave-optics shows that defocus 

can result in significant improvement of peak laser intensity at the target in the air-to-

ground case, the Breaux ND cannot be applied without modification in a scaling law that 

seeks to model the effect of beam defocus. 

geoma

geoma

 To overcome this limitation of the Breaux formulation, we leverage Smith [1977] 

who developed correction factors for various aspects of the collimated thermal blooming 

case under constant wind and low absorption assumptions.  In particular, the correction 

factor derived for converting a collimated distortion number to that for a focused case is: 
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where  is the radius of the propagating aperture and  is the radius of the spot at the 

target for the given degree of focus as well as diffraction and other linear effects (such as 

turbulence and jitter).  Fitting our purpose, note that the focus distance, from which  is 

determined, need not be the same as the target distance, but can be beyond it.  However, 

since the Breaux formulation already assumes the beam is focused at the target, 

determining ND for a defocused (non-collimated) case requires first dividing Eq. 3.1 by 

Eq. 3.3 evaluated for the target-focused case, and then multiplying by Eq. 3.3 re-

evaluated for the defocused case.  ND’s for defocused settings calculated in this way will 

be referred to as Breaux and Smith results.  Results of this approach are discussed in a 

later section.  Next, we describe a baseline air-to-ground HEL engagement scenario that 

is useful for evaluating our ND formulation. 

ia fa

fa

 

3.3. Baseline Scenario 

In order to understand how a notional ATL will respond to defocus in view of the 

many factors that determine performance, we first establish a baseline air-to-ground 

scenario with two laser power values.  We will then later examine sensitivities and 

expand our scope.   Here are the particulars of the baseline scenario: 

• Weapon platform:  2 km altitude, 100 m/s due east velocity vector  

• Target point:  located east of platform, on ground at sea level, and stationary; 

6000 m slant range from platform 

• Laser aperture:  0.5 m diameter, 30% single-axis central obscuration 

• Atmosphere:  1976 US Standard for temperature [St. John, et al]; the Mani 

atmosphere for absorption and scattering (molecular and aerosol) [2004], Bufton 
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wind model with 10 m/s wind at ground from the north [St. John, et al].  No 

turbulence is assumed for most of the analysis.  When turbulence is included, the 

HV 5/7 atmosphere is assumed [St. John, et al]. 

• Laser powers at aperture: 50 and 100 kW continuous wave, beam quality 1.0, 

uniform beam profile 

• Beam control:  closed-loop tracker for tilt correction only, no higher order 

correction 

Figure 3.1 provides an illustration for many of these baseline scenario settings.   

 

Bufton
wind

100 m/s

N

6 km
2 km

Top view View from south

Bufton
wind

100 m/s

N

6 km
2 km

Top view View from south
 

Figure 3.1.  This is a graphical illustration of some of the baseline scenario settings: 
range, altitude, velocity, wind, and platform orientation to target.  
  

In addition, for each of the variables described above, a range of settings is explored 

including the following. 

• Weapon altitude:  two, three, and four km 

• Velocity vector:  100 m/s east and 100 m/s north 

• Slant range:  3000, 4500, 6000, and 9000 m 

3-8 



 

• Laser power:  50, 75, 100, 125, 150, 175, and 200 kW 

• Wind:  0.25x, 0.5x, and 1x Bufton from north 

• Aperture central obscuration:  10% and 30% one-dimensional 

• Turbulence:  no turbulence (0x), 0.5x, 1x, and 2x Hufnagel-Valley 5/7 (HV5/7) 

• Absorption and scatter:  80 percentile winter and 80 percentile summer mid-

latitude 

 The absorption dimension is not single-valued, since it is a function of altitude, 

and we also include with it extinction due to scatter.  Table 3.1 contains the combined 

molecular and aerosol absorption and scattering coefficients for the baseline (Mani) 

assumption, and the 80-percentile summer case.  The Mani atmosphere constitutes an 

approximately an 80-percentile winter case.  Note that the scattering (which is primarily 

due to aerosols) is left approximately unchanged between the cases. 

Table 3.1.  Combined absorption and scattering coefficients due to molecular and 
aerosol effects in this study.  

Atmosphere Altitude 
(km) αabs αscat 

Mani  
(80-percentile 

winter) 

0 0.03755 0.05376 

1 0.01905 0.02377 

2 0.00827 0.00702 

3 0.00401 0.00305 

4 0.00199 0.00169 

80-percentile 
summer 

0 0.06681 0.05376 

1 0.06226 0.02377 

2 0.02103 0.00701 

3 0.01187 0.00304 

4 0.00656 0.00168 
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The scope of this research did not allow for all combinations of these settings to 

be investigated, but the baseline scenario is used as a pivot point to investigate these 

variables one at a time.  However, in several instances we changed more than one 

parameter to investigate interactions between scenario variables.  

 

3.4 Phase Screen Modeling Requirements 

 Modeling ATG COIL engagements of interest to this research in ACS began with 

an initial model set up that included ten phase screen positions in the optical path to 

represent turbulence and blooming.  This appeared to be a standard approach based on 

discussions with several in the HEL modeling community [Link, Vernon, Magee], though 

Link did document that while ten phase screens was understood to be adequate to 

represent turbulence, it had not been shown at that time to be adequate for representing 

thermal blooming.  Further, the emphasis of many studies in the past two decades was 

ground to space, following the prevailing ballistic missile defense (BMD) interest.  From 

a thermal blooming standpoint, BMD scenarios are fundamentally different than ATG 

scenarios since for BMD, the beam remains collimated while in the atmosphere, and most 

thermal blooming will occur near the aperture; whereas, the opposite of these is true for 

the ATG scenario as discussed above. 

 Nonetheless, significant data was gathered from ACS runs for ATG scenarios 

using ten phase screens, in part to build a comparison to previous studies that used similar 

phase screen count [Vernon and St. John] and also to avoid concern about having phase 

screens too close to each other [Link].  The latter is important since ACS generates the 

screens independently of each other, and having independent phase screens too close to 

one another can result in an overall turbulence effect that is more severe than intended 
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since turbulence in the atmosphere is spatially correlated.  It was not until we began 

defocus investigations that inaccuracies arose caused by too few phase screens for 

properly modeling thermal blooming, though it was not clear at the time what the culprit 

was.  Not surprisingly, the number of phase screens has an additional dynamic when 

turbulence is included in the model.  This will be addressed in Chapter 4. 

 

3.5 Phase Screen Selection 

 When using wave-optics to simulate thermal blooming, one typically divides the 

atmosphere into slabs, the refractive effects of which are each represented by thin phase 

screens.  The refractive effects modeled here are turbulence, when assumed, and the 

interaction of the beam with the atmosphere through thermal blooming.  Experience has 

shown [Link, 2003] that for the baseline scenario, ten phase screens are adequate to 

model the turbulence.  However, we discovered ten screens are not adequate for 

accurately capturing thermal blooming effects.   

In order to find an adequate number of phase screens to capture thermal 

blooming, we started with the baseline scenario at 150 kW for added conservatism with 

respect to thermal blooming, since the appropriate number of phase screens for the 150 

kW power level should be adequate for power levels near or below that value.   Then, 

using ten phase screen placements as a first case, phase screens were added on the target 

side of each existing phase screen to come up with 20, 30, and 40 phase screen 

distributions.   Figure 3.2 shows the phase screen density as a function of altitude for each 

of these cases.   
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Figure 3.2.  Phase screen density as a function of altitude for 10, 20, 30, and 40 
screen cases. 
 

 Note that the phase screens are not uniformly distributed.  There are three reasons 

for this.  From the perspective of turbulence, the strength of turbulence is higher near the 

ground, calling for increased turbulence screen density near the ground.  From the 

perspective of thermal blooming, there are two issues:  Absorption is worse near the 

ground and the beam is coming to a near-focus near the ground, meaning the strength of 

thermal blooming is significantly biased toward the target for our analysis.  The location 

of the most powerful thermal lensing effect near the target is illustrated by the fact that in 

the 20 phase screen case, we deleted the five new phase screens nearest to the laser 

aperture to come up with a 15 screen case, and the results were nearly identical to the 20 

screen case.  This suggests the additional screens near the aperture are much less 

important than the additional screens near the target.   To get the phase screen density for 

3-12 



 

an optical path for a given platform altitude, one would multiply the altitude density by 

cos(θ) where θ is the zenith angle of the platform from the target.  Figure 3.3 illustrates 

how the altitude density relates to various path densities for slant ranges of 3000, 6000, 

and 9000 at the 2 km platform altitude. 

2 km alt.

3 km slant range6 km slant range9 km slant range
0 km alt.

HEL optical pathPhase screen altitude

2 km alt.

3 km slant range6 km slant range9 km slant range 3 km slant range6 km slant range9 km slant range
0 km alt.

HEL optical pathPhase screen altitude HEL optical pathPhase screen altitude
 

Figure 3.3.  Schematic of path phase screen density as it relates to altitude density.  
Phase screens are placed perpendicular to the optical path at the intersection of the 
optical path and the altidude position.  The dashed blue lines are representative 
phase screen altitudes with increasing density near the ground.   
 

 Next, we run the 150 kW scenario with each phase screen density in ACS for the 

focused beam (6000 m) and a range of defocused cases (6100 m to 7500 m) to determine 

the peak irradiance function of focal range for each phase screen density case.  By 

observing the change in the function with each increment in phase screens (10 to 20, 20 

to 30, and 30 to 40), it was determined that by the time 30 phase screens are used, the 

peak irradiance function had adequately stabilized.  Figure 3.4 shows the magnitude 

percentage change in the peak irradiance values for each increment, plotted as a function 

focal length.  As seen there, increasing the number of phase screens from 30 to 40 results 

in changes that are only 1% or smaller in magnitude.  Table 3.2, shows the average 

irradiance change across the focal lengths of 6000-7500 m for each increment.  The 

reason 30 screens is used instead of 40 is that additional phase screens significantly 
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increase the simulation run time, so the minimum number of screens that adequately 

represents the effect is desirable. 
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Figure 3.4.  Effect of increasing phase screens on peak irradiance. 
 
 
Table 3.2.  Average across focus ranges 6000-7500 m of magnitude percentage 
change in peak irradiance for each increment increase in phase screen number 

Phase screen change 20 screens from 10 30 screens from 20 40 screens from 30 

Average change in 
peak irradiance 9.0% 1.5% 0.5% 

 

 While there is no penalty, besides simulation run time, for using more screens 

with respect to thermal blooming, there is a potential difficulty with high screen densities 

and modeling turbulence under certain assumptions we make, such as statistical 

independence of the turbulence phase screens.  However, there were only negligible 

differences between baseline scenario peak irradiance values with thermal blooming off 

and turbulence turned on across phase screen density space described above.  This is 

3-14 



 

possibly due to the fact that the atmospheric coherence length is on the order of the 

diameter of the aperture for these scenarios and is discussed in more detail in Chapter 4.     
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Figure 3.5.  Peak irradiance as a function of focal length for baseline scenario with 
30% central obscuration.    
 

3.6. ATG HEL Scenario Performance Under Defocus 

 Using the baseline scenario, let us first illustrate the effect of using defocus to 

improve peak irradiance at different power levels under the assumption of each central 

obscuration size.  Figure 3.5 shows the peak irradiance curves as a function of focal 

length for the 30% obscuration, while Figure 3-6 show the same curves for the 10% 

obscuration.   

 Note in Figure 3.5 that as power exceeds 100 kW, a higher order local optimum in 

the peak irradiance function emerges just as focal distance passes 6500 m.  As shown in 

Chapter 4, HV 5/7 turbulence washes that optimum out, while leaving the second 
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optimum intact.  For the purpose of investigating defocus distance relationships to peak 

irradiance, those local optima which are not washed out by turbulence will be used.  

Figure 3.6 shows that the peak irradiance functions for the 10% obscuration case are 

unimodal across the power range of interest here.  Also, it is apparent that the optimal 

defocus distance is not as strong a function of power as it is for the 30% obscuration case.  

However, turbulence interacts with the 10% obscuration optima more severely than it 

does the 30% obscuration optima so that when the obscuration is 10%, the optimum focal 

length will be impacted by turbulence more than the 30% obscuration case.  Again, this 

will be explored further in Chapter 4.   
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Figure 3.6.  Peak irradiance as a function of focal length for baseline scenario with 
10% central obscuration. 
 

 Using these results, we plot peak irradiance as a function of output laser power for 

the baseline scenario at focused and optimally defocused settings for both obscuration 
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assumptions (Figure 3.7).  The power for which this function begins to decline rather than 

rise is known as the critical power.  Figure 3.7 shows the peak irradiance functions for 

these cases.  In each case, under the no turbulence assumption, optimal defocusing pushes 

the critical power to 200 kW or higher from approximately 150 kW (10% obscuration) 

and 100 kW (30% obscuration) for the focused cases.  Also, the 10% obscuration case 

appears to have a distinct peak irradiance advantage over the 30% obscuration case, 

particularly under optimal defocus.  This peak irradiance advantage will not be as 

pronounced under turbulence but it is still noteworthy.  Turbulence likewise balances the 

disproportional defocusing improvement factor enjoyed by the 10% obscuration case 

(1.42 at 100 kW versus 1.25 for 30% obscuration case) under no turbulence.  
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Figure 3.7.  Peak irradiance as a function of power for the baseline scenario, focused 
and optimally defocused cases, by aperture obscuration size (10% and 30%). 
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3.7. Velocity Vector Relative to Target 

 The difference in behavior of the two obscuration sizes is present in all aspects of 

variation from the baseline scenario that were investigated.  In particular, one scenario 

variable setting that represents a globally better operating variation from the baseline is 

that of having the velocity vector perpendicular to the target vector as depicted in Figure 

3.8 (e.g., north), rather than having the platform moving east toward the target.  These 

will be referred to as “perpendicular” and “parallel” propagation, respectively.  This time 

for perpendicular propagation, we repeat graphs of the irradiance functions of focal 

length with velocity vector north for the 30% obscuration case (Figure 3.8) and the 10% 

obscuration case (Figure 3.9). 
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Figure 3.8.  Irradiance functions of focal length for perpendicular propagation and 
30% obscuration.   
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 As in the case of parallel propagation, the 10% obscuration optima are generally 

sharper, higher, and occur at shorter focal lengths than the 30% obscuration cases.  From 

these data, we build the critical power graph shown in Figure 3.10, and we see that again, 

critical power is increased to 200 kW or more from about 100 kW by using defocusing, 

and that the 10% obscuration case benefits more from defocus than does the 30% 

obscuration case. 
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Figure 3.9.  Irradiance functions of focal length for perpendicular propagation and 
10% obscuration. 
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Figure 3.10.  Peak irradiance as a function of power for the perpendicular 
propagation version of baseline scenario, focused and optimally defocused cases, by 
aperture obscuration size (10% and 30%). 
 

 As mentioned, perpendicular propagation is a globally better operating condition 

than in parallel propagation for the otherwise baseline scenario.  The reason for this is 

that the effective wind velocity through the atmospheric beam tube is significantly higher 

when the platform is shooting to the side rather than forwards at a slightly depressed 

angle.  This reduces ND according to Eq. 3.1., and improves thermal blooming Strehl.  

Figure 3.11 shows the improvement factor achieved with no turbulence by using 

perpendicular propagation.   
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Figure 3.11.  Improvement factor for perpendicular propagation versus parallel 
propagation for otherwise baseline scenario, focused and optimally defocused cases, 
by aperture obscuration size (10% and 30%). 
 

3.8. Target Range 

 Peak irradiance at the target plane in a vacuum propagation is well known to be 

inversely proportional to the square of the range.  In an absorping atmosphere, increasing 

range also increases the absorption and usually increases the severity of the thermal 

blooming, which only strengthens the inverse relationship between peak irradiance and 

range.   

 The payoff due to optimal defocus is also a function of range as well as 

obscuration size.  Figure 3.12 shows the improvement factor for defocus rises from 1.15 

to over 1.3 for the 30% obscuration as range increases from 3 km to 9 km for an 

otherwise baseline scenario.  For the 10% obscuration, the improvement factors are 

higher, rising from 1.28 to 1.54 over the same range.  (These improvement factors appear 
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to be biased a bit low since they are calculated using wave optics data gathered using 

only 20 phase screens.  A 30 phase screen anchoring point is plotted to illustrate that 

bias.) 
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Figure 3.12.  Improvement of target peak irradiance at optimal defocus over focused 
case as function of range to target of otherwise baseline scenario.  Note: 10% 
obscuration dash-dot line is comprised of 20 phase screen results; 10% obscuration 
& 30 phase screen result at range = 6 km (solid diamond) added as reference to 
suggest 20 screen line may be biased a bit low. 
 

 The peak irradiance values for the baseline scenario (100 kW) for both 

obscurations and focused and optimally defocused settings are contained in Table 3.3.  

While the 10% obscuration has a definite advantage over the 30% obscuration under the 

no turbulence assumption, this advantage is reduced considerably under turbulence as 

will be shown in Chapter 4.  Figure 3.13 graphs the peak irradiance improvement factor 

of 10% obscuration over the 30% obscuration under focused and optimally defocused 
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conditions.  Recall from above that the optimal defocus distances are different for the two 

obscurations.   

 It is also instructive to think of the effect of defocus in the context of the 1/r2 rule.  

As range increases in the baseline scenario from 3 km to 9 km, additional extinction (due 

to absorption and scatter) occurs, so the 1/r2 rule is an upper bound on performance as a 

function of range.  Also, due to the geometry chosen for the baseline scenario, a longer 

range to target results in a decrease in the angle between the laser propagation vector and 

the aircraft velocity vector, which in turn reduces the effective wind through the beam 

path.  This increases the thermal blooming distortion number resulting in a reduction in 

thermal blooming Strehl.   

Table 3.3.  Target plane peak irradiance values (W/m2) for given settings by range 
for otherwise baseline scenario (100 kW). 

Range 

10 % obscuration 
(20 phase screens) 

30 % obscuration 
(30 phase screens) 

Focused Optimally 
defocused Focused Optimally 

defocused 
3 km 2.73E+8 3.50E+8 2.47E+8 2.93E+8 

4.5 km 9.11E+7 1.20E+8 7.46E+7 9.25E+7 

6 km 4.03E+7 5.59E+7 3.22E+7 4.03E+7 

9 km 1.23E+7 1.92E+7 9.75E+6 1.27E+7 
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Figure 3.13.  Peak irradiance improvement factor of 10% obscuration relative to 
30% obscuration by range for otherwise baseline scenario.   
  

 Figure 3.14 shows the fraction of peak irradiance relative to the 1/r2 rule that is 

achieved as range increases from 3 km in the baseline scenario.  Here we see that the 

10% obscuration stays closer to one for both focus assumptions than does the 30% 

obscuration  Also, the benefit of defocus with respect to recovering 1/r2 performance is 

better for the 10% obscuration  The bottom line from this section is that the smaller 

obscuration is clearly advantageous over the larger one.  However, this analysis has yet to 

include turbulence, the interaction of which with thermal blooming will impact the 

advantage we see here. 
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Figure 3.14.  Peak irradiance for given obscuration and focus assumptions as a 
function of range relative to the 1/r2 rule applied to peak irradiance at 3 km for 
otherwise baseline scenario. 
 

3.9. Ground Wind 

 According to the theory behind the use of scaling laws to predict TB effects in the 

presence of wind, the thermal blooming distortion number, ND, should scale inversely 

with effective wind, especially when the scenario is simple—e.g. a collimated beam in a 

uniform wind for which the ND contribution is approximately constant along the path.  

Our baseline scenario is more complex, having a focused beam and effective wind 

through the beam path at the aperture dominated by the aircraft velocity component 

perpendicular to the propagation vector; whereas at the target, the ground wind dominates 

(given our stationary target assumption).  However, since the aircraft velocity is high and 

the beam is most expanded near the aperture, and oppositely, the effective velocity is 

lowest and beam is most tightly focused near the target, most of the ND contribution is 

near the target, so ND can be expected to vary almost inversely with ground wind.  When 
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this is the case, laser output power and the inverse of the ground wind are aliased in the 

ND equation so that halving of the wind is like doubling the power with respect to 

determining the thermal blooming effect. 

 The baseline scenario has the ground wind at 10 m/s (approximately 22.4 mph) at 

the target.  Since the wind is from the north, and the target is to the east of the ATL 

platform, the effective wind at our stationary target equals the ground wind.  From the 

perspective of wind alone, this is probably a best case that can be expected since 

increased wind increases STB (i.e., counting on even higher ground wind velocities would 

be risky).  Further, selecting an engagement geometry that has the beam path 

perpendicular to wind field at the target is also optimal.  (The wind field at the target is 

the resultant of the ground wind and target velocity vectors.)  Therefore, we examine the 

effects of reducing the ground wind in the baseline scenario (and variations) to 5 m/s and 

2.5 m/s upon the peak irradiance-defocus relationship.   

 Figures 3.15, 3.16, and 3.17 illustrate these effects for three scenarios:  the 

baseline scenario with 50 and 100 kW and the 100 kW baseline scenario with 10% 

obscuration, respectively.  Notice that as wind drops, the peak irradiance potential also 

drops due to increased thermal blooming.  Also, notice that the optimal focal range 

increases as wind speed drops; however, the relationship between these two factors is not 

as strong in the 10% obscuration case (see also Figure 3.20).  In Figure 3.16, the graphs 

are not unimodal.  This phenomenon is most likely related to the multi-modal behavior 

seen in Figure 3.5 for the baseline scenario with 150 and 200 kW, since wind and power 

are nearly aliased.  These early modes in the 5 and 2.5 m/s lines will probably likewise be 

lost due to interaction with turbulence as mentioned in the case of the 150 and 200 kW 
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lines in Figure 3.5.  As a result, we record the maximum of the second mode as the peak 

irradiance point, pointed out by arrows in Figure 3.16.  An important caveat to keep in 

mind is that the data for Figures 3.15 and 3.16 were gathered using 20 phase screens due 

to time constraints.  Based on 20 phase screen results for the 100 and 150 kW baseline 

scenario cases and for the 10 phase screen results for the 200 kW baseline scenario, the 

results for this section can still be considered a reasonable approximation to the 

relationships explored here.  The most uncertainty lies in the 2.5 m/s, 30% obscuration, 

100 kW baseline scenario:  If power and wind are aliased, then this is the near-equivalent 

to a 400 kW baseline scenario.  However, the results for this setting are not discontinuous 

with the other settings, and further, the largest impact of using too few phase screens is 

when turbulence is also modeled, which results in the overestimation of the turbulence-

thermal blooming interaction.  In this chapter, turbulence is not considered.   
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Figure 3.15. The peak irradiance response to defocus for the 50 kW baseline 
scenario for windspeeds of 10, 5, and 2.5 m/s. 
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Figure 3.16. The peak irradiance response to defocus for the 100 kW baseline 
scenario for windspeeds of 10, 5, and 2.5 m/s.  Arrows identify optimal performance. 
 

 Figure 3.17 shows that the optimal defocus response of the 10% obscuration case 

to changes in thermal blooming is not as strong as in the other two cases.  Also, the peak 

irradiance is generally higher than the other 100 kW case in Figure 3.16.  These data were 

gathered with 30 phase screens, with the exception of the 2.5 m/s wind case which 

required 40 phase screens before the graph settled down—and this was with no 

turbulence.  This is likely related to the fact that for scenarios where the optimal defocus 

multiple is smaller, the more sensitive the peak irradiance function at optimum is to phase 

screen numbers.  This held true for the shorter optimal defocus multiples that occurred 

for close range engagements on an otherwise baseline scenario.  The defocus multiples 

for all scenario variations can be seen in the composite graph shown in Figures 3.24 and 

3.25. 
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Figure 3.17. The peak irradiance response to defocus for the 100 kW baseline 
scenario for wind speeds of 10, 5, and 2.5 m/s and 10% obscuration. 
 

 Figure 3.18 plots optimal peak irradiance as a function of wind speed for the three 

scenarios.  The most notable feature of this comparison is that the advantage the 10% 

obscuration has over 30% obscuration at 100 kW appears to fade as wind speed slows to 

2.5 m/s (5.6 mi/h) though it remains distinct at 5 m/s (11.2 mi/h).  Figure 3.19 highlights 

the benefit of using defocus for COIL ATG systems.  At a wind speed of 10 m/s, our 

three scenarios show 20% to 40% improvement with defocus.  However, the 

improvement potential increases markedly as wind speed drops.   
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Figure 3.18.  Peak irradiance at optimal defocus as a function of ground wind speed, 
by power (kW) and obscuration size (%) in otherwise baseline scenario.  
 

 COIL ATG systems will depend upon some amount of wind to allay thermal 

blooming, but the precise wind at the time of the engagement may be difficult to know.  

Figure 3.20 shows another advantage of the 10% obscuration in this regard:  It has the 

flatter optimal focal length response to wind speed.  While use of an active feedback 

system to optimally control defocus and pointing will probably be necessary in light of all 

the variables that can affect thermal blooming, the burden on such a system is reduced 

when the design is as insensitive as possible to scenario variables.  As we will summarize 

later, the 10% obscuration is less sensitive than 30% obscuration across all scenarios; 

further, with a few exceptions, it also appears to benefit more from defocus.    
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Figure 3.19. Improvement factor in peak irradiance at optimal defocus over focused 
case as function of ground wind speed, by power (kW) and obscuration size (%) in 
otherwise baseline scenario. 
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Figure 3.20. Optimal defocus multiple of target range as function of ground wind 
speed, by power (kW) and obscuration size (%) in otherwise baseline scenario. 
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3.10. Absorption 

 The Mani atmosphere used in our baseline scenario represents about an 80 

percentile winter absorption and scatter profile for mid-latitude regions, meaning 

propagating conditions are better than Mani about 80% of the time in the winter.  

However, summer provides a more stressing atmosphere primarily due to increased 

humidity, which results in increased molecular absorption due to water vapor.  Therefore, 

as a variation from the baseline scenario at 50 and 100 kW, we gathered peak irradiance 

and defocus results for an 80 percentile mid-latitude summer atmosphere.   The combined 

molecular and aerosol absorption and scatter coefficients for these two atmospheres were 

given above in Table 3.1.  It happens that this summer atmosphere is slightly less than 

twice as stressing than the Mani atmosphere in terms of distortion theory.  The Breaux ND 

values, described below, for the two cases are 53.5 and 27.3, respectively.   As such, to 

the extent that the distortion theory is valid, the defocus profile under the summer 

atmosphere for a given scenario should take on a similar shape as the defocus profile for 

the same scenario but with a winter profile and twice the power.   

 Figures 3.21 and 3.22 show that this expectation is realized.  Figure 3.21 plots the 

50 kW baseline scenario with both the winter and summer atmospheres along with the 

100 kW baseline (winter) scenario.  The optimum of the 50 kW, summer line is the same 

as for the 100 kW, winter line.  We expect the amplitude of the former to be no larger 

than half that of the latter since half the power is being subject to a similar amount of 

thermal blooming.  In fact, it should be less than half because the cumulative extinction 

in the latter case will be approximately double that of the former case.  Likewise in 
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Figure 3.22, we see that the 100 kW summer defocus profile is similar in shape to the 200 

kW winter profile, both of which feature two modes.  If the analogy is complete, the first 

mode will be washed out by turbulence as found for the 200 kW winter case and 

discussed in the next chapter—therefore we consider the second mode in Figure 3.22 

graphs to be the optimum.   

 One important finding from this scenario variation is the validation of aliasing of 

power and absorption on thermal blooming Strehl.  This validation is supported by 

defocus profile similarity for both comparisons, which includes similarity in the focal 

range for optimum performance.  An important difference is also found, and that is the 

improvement at optimal defocus is not as good for the summer case as it is for the double 

power winter case.  This may be due to the fact that increased absorption means that the 

thermal distortion contribution of the optical path near the target is reduced relative to the 

rest of the optical path.  Defocus is primarily effective at countering thermal blooming 

near the target, rather than thermal blooming near the aperture or even the middle portion 

of the optical path.  Figures 3.23 and 3.24 plot the peak irradiance improvement factor as 

a function of focal length for a closer comparison of our two sets of cases.   

 Absorption (as well as scatter) is similar to wind in that it is difficult to know in 

advance the actual atmospheric makeup at the time of an engagement.  And like wind, the 

optimal focal length is sensitive to the atmospheric absorption conditions—though 

presumably this sensitivity would be reduced for 10% obscuration cases since that 

occurred with power and power and absorption are strongly aliased.  (This sensitivity 

supports the notion that some sort of active defocus control with feedback from the 

irradiance pattern on the target would be ideal; on the other hand, if the optimum is fairly 
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flat in regimes where defocus does the most good, open loop control using knowledge 

gained about absorption and wind by some other means has possibilities.)  However, 

unlike wind, there is little in terms of propagation vector that can be done to mitigate the 

effect of absorption—but an engagement geometry change in terms of altitude can offset 

the effects of absorption, which usually decreases with altitude, keeping the range 

constant. 
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Figure 3.21.  Peak irradiance as function of defocus for mid-latitude 80 percentile 
winter (50 and 100 kW) and 80 percentile summer (50 kW). 
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Figure 3.22.  Peak irradiance as function of defocus for mid-latitude 80 percentile 
winter (100 and 200 kW) and 80 percentile summer (100 kW). 

 

3.11. Altitude 

 Aircraft altitude will affect two important factors that determine the amount of 

thermal blooming experienced in propagation.  First, since the absorption and scatter 

coefficients are inversely correlated with altitude, a constant-range altitude increase will 

reduce the amount of absorption that occurs, decreasing the thermal blooming distortion 

number.  Second, when the propagation vector is not perpendicular to the aircraft velocity 

vector or the ground wind vector, increasing altitude will increase the acute angle 

between the propagation and local airmass vector—this increases the effective wind 

velocity through the beam tube and reduces the thermal blooming distortion number.  In 

this section, we explore the baseline scenario increasing the altitude from 2 km to 3 and 4 

km, but to improve comparison, we keep the aircraft range to target equal to 6 km.  So 

the higher the aircraft is, the closer in terms of ground distance it is to the target.  The 
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improvement in wind effect near the aperture is emphasized by the baseline scenario and 

these excursions:  Since in these scenarios, the aircraft is flying level in the direction of 

the target, a constant-range (6 km), higher-altitude scenario will have an increased angle 

between the propagation and aircraft velocity vectors (i.e., the laser aperture has to look 

down more relative to the horizon).  Figure 3.23 shows the peak irradiance response to 

defocus at the altitudes studied.  Note that not only did the focused and optimally 

defocused peak irradiance increase as altitude increased, but clearly the optimal focal 

length shortens as altitude moves from 2 to 4 km.   
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Figure 3.23.  Peak irradiance response to defocus for baseline scenario by aircraft 
altitude.  Range is held constant at 6 km. 
  

 Figure 3.23 suggests that the higher the altitude the better; of course, keeping the 

range constant at 6 km limits the altitude in such a strategy.  However, as mentioned, 

ground distance to target decreases when the target range is constrained.  If it is more 
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appropriate to constrain ground distance (perhaps due to defensive constraints), then a 

different optimization that seeks the best altitude for a given ground range should be 

undertaken—in which case, the third variable of range to target enters the factors that 

affect thermal blooming.  The bottom line is that for a given range, the highest altitude 

possible to conduct the engagement is probably preferable, unless there are constraints on 

how large the angle between the velocity vector and the propagation vector can be—i.e., 

if there are prohibitive aero-optic effects.  Also, the higher altitude engagements may 

have a flatter optimal defocus response to other scenario variables which makes the 

defocus process easier to control.   

 Finally, the altitude excursion scenario provides a good illustration of the pitfall 

we experienced using only ten phase screens to represent thermal blooming.  Figure 3.24 

has the same top two lines as Figure 3.23, which are the 4 km and 3 km peak irradiance 

defocus profiles, respectively, calculated using 30 phase screens.  Below them are plotted 

the profiles calculated when using ten phase screens.  Clearly, use of ten phase screens 

underestimates the performance, but it also gives an irregular defocus profile that 

overestimates the optimal defocus distance.  In fact, with an appropriate definition of 

“irregular,” one could conceivably detect whether the phase screen density profile is 

inadequate.  
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Figure 3.24.  Phase screen density effect on defocus profile.  Peak irradiance 
response to defocus for baseline scenario by aircraft altitude and phase screen 
setting.  Range is held constant at 6 km. 
 

3.12. Aligning These Dimensions of Sensitivity Using ND 

 Our scaling variable, the Breaux distortion number ND calculated for the focused 

case, is a well-defined and empirically useful function of the scenario variables.  Using 

ND, a comparison of the above dimensions of ATG laser weapon sensitivity to defocus 

can be made.  Leveraging the data from the forgoing sections, the 100 kW baseline 

scenario becomes a pivot point about which the performance space will be explored.   

The 100 kW baseline scenario values are fixed for all dimensions except one and values 

for each dimension of variation we evaluate are listed in Table 3.4 along with the Breaux 

ND value for that scenario--i.e., we evaluate the sensitivity of performance in only one 

dimension of variation at a time.  Then the optimal defocus multiples and irradiance 
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improvement factors are plotted in Figures 3.25-3.28 against Breaux ND for all 

dimensions explored in this study.  This approach also illustrates the utility of focused-

case Breaux ND as a predictor of optimal defocus and expected improvement.   

Table 3.4.  Scenario values and associated Breaux ND for this study. 
Scenario description Variation value ND 

Dimension to vary 

Power (kW) 

50 11.8 

100* 23.7* 

150 35.5 

200 47.3 

Slant range (km) 

3 9.6 

4.5 16.6 

6* 23.7* 

9 37.2 

Absorption (Table 3) 
80% winter* 23.7* 

80% summer 53.5 

Ground wind (m/s) 

2.5 41 

5 32.7 

10* 23.7* 

Propagation vector 
perpendicular 9.8 

parallel* 23.7* 

Altitude (km) 

2* 23.7* 

3 16.6 

4 12.5 
* 100 kW baseline scenario (pivot point) 
 

3.13. Optimal Defocus Performance by Obscuration Size 

 Using Breaux ND as the independent variable, we plot the optimal defocus 

multiple (optimal focal range divided by Rtarget) and performance improvement factor 

(optimal peak irradiance divided by focused-case peak irradiance) for the baseline 
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scenarios as well as their variations and we see that a relationship is apparent.  Further, as 

suggested earlier, a clear distinction in that relationship appears between the 30% and 

10% obscuration cases.  Figures 3.25 and 3.26 show the respective optimal defocus 

multiples as a function of Breaux ND for each dimension of variation (some of the 

dimensions were not explored for the 10% case since it was not the baseline scenario).  

For the 30% obscuration, the optimal defocus appears to rise about 6% per ΔND = 10, 

until about ND = 30, when the defocus multiple rolls flat at about 1.25.  In contrast to that, 

the optimal defocus multiple for the 10% obscuration jumps about 5% immediately and 

stays between 1.05 and 1.10.  (Note that Figures 3.25 and 3.26 have the same vertical 

scale for comparison purposes.)  For the 10% obscuration case, given its susceptibility to 

turbulence interaction, it appears one could safely operate at about 5% defocus at all 

times to get most of the defocus benefit and stay to the left of the optimal point.  
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Optimal defocus functions of ND for 30% obscuration
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Figure 3.25.  Optimal focal length multiple of slant range (defocus) for 100 kW 
baseline scenario (30% obscuration) and varied parameters, as function of focused-
case ND. 
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Optimal defocus functions of ND for 10% obscuration
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Figure 3.26.  Same as Figure 3.25 except for 10% obscuration. 
 

 Next, we look at the peak irradiance improvement relative to the focused case as a 

function of ND when operating at the optimal defocus shown above for each scenario.  

Figures 3.27 and 3.28 plot these results for the 30% and 10% obscuration cases, 

respectively, and as before, they have the same vertical axes to facilitate comparison.  

Figure 3.27 shows the improvement in peak irradiance for the 30% obscuration case is a 

factor of 1.2 for many settings that span the ND range.  Exceptions are wind and power, 

the former of which shows large improvements, but that is primarily due to the fact that 

the slow winds significantly knock down STB (as shown in Figure 3.29).  This highlights 

the importance of wind as a major factor in determining a COIL-equipped ATL’s 

performance, and when wind is low, defocusing the beam can offer significant assistance.  
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(The improvement factor value that exceeded the vertical axis range on the wind line is 

2.7 for ND = 41.)  Similarly, 200 kW power pushes down STB, making the recovery due to 

defocus look remarkable, when in fact defocus is merely moving the critical power from 

a smaller value from 125 kW to 200 kW, as was shown in Figure 3.7.  The altitude and 

propagation vector lines illustrate better operating scenarios than the baseline scenario.  

Not only does propagating perpendicular to the velocity vector improve STB, as shown in 

Figure 3.29, but that geometry also responds to defocus more readily.  The same is true 

for increased altitude (keeping slant range the same).  Combining the two geometries 

should yield additional benefit. 
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Figure 3.27.  Peak irradiance improvement at optimal defocus for 100 kW baseline 
scenario (30% obscuration) and varied parameters, as function of focused-case ND. 
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Optimal improvement functions of ND for 10% obscuration
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Figure 3.28.  Same as Figure 3.27 except for 10% obscuration. 
 

 Figure 3.28 shows that in spite of the fact that the optimal defocus multiple is 

fairly flat for the 10% obscuration case (Figure 7), the improvement over the focused 

case increases as Breaux ND increases by about 18% per ΔND = 10.  It must be 

remembered that for the 10% obscuration, the larger improvements at high ND will be 

offset by the thermal blooming-turbulence interaction that affects this case to a greater 

degree, as we will show for the case of laser power below.  The perpendicular 

propagation geometry again represents a better operating point than the baseline scenario, 

and shows tremendous potential benefit from defocus; however, the interaction with 

turbulence will affect it also.   
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 Wallace et al. [1977] have found that in the case of the thermal lens being 

strongest close to the target plane that the amount of potential correction by adjusting the 

phase at the aperture is limited to about a factor of two.  As discussed above, the air-to-

ground case results in such a thermal lens placement.  We have found that defocusing the 

beam, in every air-to-ground geometry explored here, results in some irradiance benefit.  

In many of the cases, a significant portion of Wallace’s recovery limit is realized with 

defocus alone.  The improvements found herein are also consistent in magnitude with 

findings by Pearson [1978] for thermal lenses near the target plane. 

 Defocus appears to work, not because it constitutes a phase correction (most of 

the distortion being corrected with the small amount of focus we suggest is in the far field 

portion of the focused beam), but rather because it reduces the beam spreading transverse 

to the wind that occurs near the target plane.  An intense focused beam with a wind 

perpendicular to it will set up steep temperature gradients in the beam path that 

constitutes a negative lens and spreads the beam transverse to the wind.  A small amount 

of defocus only affects the beam near the target, but this slightly wider beam with the 

same wind will have shallower temperature gradients resulting in less spreading.  To be 

sure, in the non-thermal blooming case, defocusing the beam results in a decrease in peak 

irradiance, to which the improved STB is in effect applied.  However, the strength of the 

negative thermal lens, even close as it is to the target plane, is reduced at a faster rate than 

is the unbloomed irradiance for some amount of defocus.  This view of the effect is 

supported by an experiment performed by Edwards [2004] in which he showed jitter 

transverse to the wind was equivalent to defocus in improving irradiance of focused 

thermally bloomed beams.  Yeh et al. [1976] show that attempts to soften the transverse 
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wind temperature gradient with “guide beams” improves irradiance.  Finally, when 

observing the laser spot produced by our wave optics runs, the classic thermal blooming 

crescent thickens as a function of defocus, and eventually a round core will emerge in the 

center of the crescent as the flattened temperature gradient allows the center of the beam 

to pass without spreading.  This final effect usually occurs beyond the optimal defocus 

value, but its progression as a function of defocus supports the causal theory offered 

above.  

 

3.14. Thermal blooming Strehl 

 Thermal blooming Strehl, STB, is defined as the ratio between peak intensity of a 

beam with blooming distortion operative and the same beam with blooming distortion 

inoperative, but including extinction effects due to absorption and scatter.  Smith [1977] 

and Gebhardt [1990] report good correlation of STB to ND and Gebhardt provides the 

following scaling law for uniform beams: 

 ( )2.19.011 DTB NS +=  (3.4)

 
Figure 3.29 shows the resulting STB from the variations described in the previous section.  

Each line represents a different dimension of variation, and the pivot point at ND = 23.7 is 

the baseline scenario.  All points on Figure 3.29 are focused cases.  The open triangles 

are a plot of Equation 3.4, and it appears that the variation of STB as a function of ND due 

to power variation is the closest to it’s shape, although there are reasons to expect the 

Gebhardt law would not match our wave optics results: he uses a different formula for ND 

that has no lever arm in the numerator nor spreading function s.  Ideally, a scaling 

variable would be constructed such that the slope of all the STB functions is the same near 
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a common starting point; this would imply the scaling relationship between the scenario 

dimensions had been captured.  Where the line plots in Figure 3.29 do not exhibit a 

common slope at the pivot point suggests where improvements in the Breaux ND could be 

made for application in an ATL scaling law.  The higher slope of the power STB line and 

still higher slope of the wind STB line relative to the other lines point to an inconsistency 

in the scaling variable and suggests power and wind are not receiving enough weight 

relative to the other factors in the ND calculation (or similarly that the other factors are 

receiving too much weight).  The flatness of the non-wind and non-power lines led 

Vernon et al. to develop a transform for ND for the other factors, as determined by  
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Figure 3.29.  Breaux ND exhibits some inconsistency across the scenario variables in 
its correlation to STB for the air-to-ground case.  Pivot point is baseline scenario at 
100 kW. 
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Equation 3.1, that remaps them more closely to the ND response due to power (for the air-

to-ground case).   

 Figure 3.30 contains all the same data as Figure 3.29 but with the lines removed 

and the Gebhardt law highlighted with a dashed line.  Added in are the STB lines for 

defocus as a function of ND, the latter calculated two different ways.  One added plot 

(solid line, filled diamonds) is Breaux ND calculated for defocus using Equation 3.1 

where  is modified to represent increasing the focus distance beyond the target by 5, 

10, and 15 percent—longer focus distances for the given target range increases STB.   The 

large difference in slope between this plot and the rest of the STB functions indicates the 

Breaux formulation in equation 3.1 alone is not constructed in a way that allows ND to be 

calculated for the defocused case.  As mentioned earlier, the reason for this lies in 

Breaux’s special spreading function s that is RSS’ed with .  The second added plot 

(dash-dot line, filled boxes) in Figure 3.30 is the STB function for the same defocus values 

with ND calculated by applying the Smith correction factor Equation 3.3 to the Breaux ND 

for the focused case.  Interestingly, this approach yields an STB function that is not only 

more consistent with that of the other factors than is the solid, filled-diamond line, but is 

in fact very consistent with the non-power, non-wind factors to the left of the pivot point.  

This result suggests that those thermal blooming scaling law models that depend upon the 

Breaux technique for calculating ND can capture the defocus effect in the scaling 

relationship by use of the Smith correction factor. 

geoma

geoma
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Inconsistency of Breaux ND for air-to-ground case (defocus added)
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Figure 3.30.  Use of Smith correction factor removes gross inconsistency in Breaux 
ND with respect to defocus scaling.  The dashed “Poly” line is a fit to the Gebhardt 
law points to distinguish them from the scenario excursions.  Pivot point is baseline 
scenario at 100 kW. 
 

3.15. Conclusion 

 Computer simulation evidence has been presented that a high energy COIL air-to-

ground system can realize significant benefits simply by defocusing the beam during an 

engagement.  This result is consistent with the maximum expected benefit of phase 

correction when the thermal lens is located near the target plane [Wallace].   Further, the 

optimal defocus amount is proportional to the thermal blooming distortion number of the 

focused case.     

 The functional form of optimal defocus appears to be sensitive to the size of the 

central obscuration for the uniform beam with the 10% obscuration having a fairly flat 
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response to Breaux ND.  The obvious benefit of using defocus is that because it is a radial 

phase parameter, precise knowledge of the wind direction is unnecessary to implement it, 

unlike the use of coma and astigmatism, as suggested elsewhere [Gebhardt, 1979].  

Additionally, most systems could take advantage of this phenomenon without major 

hardware modification. 

 Another important aspect of defocus benefit is related to radial beam spreading 

due to diffraction from aerosol forward scattering.  In the boundary layer, significant 

aerosol densities can occur, which not only contribute to thermal blooming and 

extinction, but can also cause beam spreading on the same order of magnitude as 

turbulence [Sadot et al. 1994; Sadot et al. 1995; Fiorino et al. 2005].  This spreading 

cannot be compensated for by phase changes at the aperture.  However, such spreading 

may have the same effect as intentional defocusing on an HEL under thermal blooming 

conditions so that the effect of aerosol spreading could be to improve peak irradiance, as 

long as the spreading does not overshoot the optimal defocus.  On the other hand, aerosol 

spreading can only negatively impact the peak irradiance of lasers that do not operate 

under thermal blooming conditions.   

 Similarly, if aero-optic effects at the turret cause a high-bandwidth beam 

spreading, it may be that the focused, thermally bloomed beam benefits from the 

spreading, or at least is not adversely impacted, favoring the already preferred larger 

angle between the propagation and velocity vectors which reduces ND.  Alternatively, if 

the aero-optic spreading is low bandwidth, then an interaction with thermal blooming 

similar to that with turbulence could arise, forcing a smaller angle to be selected.   
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 If the defocus effect on thermal blooming ATL-like systems is to be utilized, the 

capability to capture the effect of defocus in scaling laws is needed for systems analysis.  

Currently, scaling laws that use the Breaux ND (Equation 3.1) cannot adequately 

represent this phenomenon.  One path to correcting this deficiency is the use of the Smith 

correction factor, Equation 3.3.  



 

4. Interaction between Turbulence and Thermal Blooming in ATG Scenarios and 

Relation to Use of Defocus for Irradiance Improvement 

 

4.1. Introduction 
 
 In this chapter, we add the assumption of turbulence to several of the scenarios 

studied in the previous chapter, and at the end, report on a case study that is closely 

related to the system being built by the USAF for experimentation.  Modeling of 

turbulence in wave-optics requires averaging since any given turbulent atmosphere is a 

random draw from distributions which define the turbulence.  We found that averaging 

ten realizations was adequate to dampen noise in estimated mean performance; however, 

the consequence is that an ACS run for any test point is at least 10x longer than for the 

same point with no turbulence assumed.  Therefore, we used the no-turbulence results to 

guide our selection of test points to gather data on with-turbulence performance.  

 

4.2. Defocus Versus Turbulence 

 One of the early hopes for this research was to use main beam defocus to avoid 

having to model turbulence in the wave optics representations since, as mentioned, the 

latter can be quite time-consuming from a computer run time standpoint.  The goal was to 

let defocus be a surrogate for turbulence and thus eliminate the need for averaging and 

free the computers up to run more scenarios.  However, it was not to be.  In this chapter, 

we will show that defocus and turbulence often have opposite effects on thermal 

blooming (TB) in the air-to-ground (ATG) scenarios, eliminating this surrogate approach 

as useful for analysis and scaling law development in this engagement paradigm.   
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 The reason for their different effects on TB lies in the bandwidths of the three 

processes considered—defocus, TB, and turbulence.  Defocus is an instantaneous process 

in that the act of defocusing a beam has an immediate effect on peak irradiance.  The 

bandwidths of the other two depend on the strengths of TB and turbulence, respectively.  

In the ATG COIL cases considered here with the beam focused or almost focused, the 

bandwidth of the thermal blooming process in our scenarios is at slowest on par with and 

usually much faster than that of turbulence; that is, the steady state peak irradiance due 

only to TB is usually reached very quickly with respect to turbulence dynamics.  

Turbulence generally takes the longest to arrive at steady state, in terms of finding the 

average peak irradiance for a scenario.  Of course, turbulence is never steady state itself 

but is constantly fluctuating.  These fluctuations are responded to by the usually faster TB 

process and often the result is that their combined effect on average, or steady state, peak 

irradiance is worse than the impacts of the two processes considered independently (i.e., 

TB without turbulence, and turbulence without TB).   

According to Smith [1977], when the turbulence bandwidth is higher than that of 

the TB process, TB scaling laws can be applied to the time-averaged turbulence-spread 

beam—this was the source of our plan to use defocus as a surrogate, and indeed we do 

find a few cases where this is a plausible explanation for the combined effect of 

turbulence and TB.  However, Smith also suggested that when the bandwidth situation is 

reversed, a TB scaling law could be applied first, after which the effect of turbulence on 

the resulting beam could be applied.  Again, this appears to explain some of the 

phenomena we see; however, there are other phenomena this theory cannot explain.  For 

instance, the higher the power, the higher is TB bandwidth, so the magnitude of the TB 
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interaction with turbulence should decrease as TB worsens (i.e., their effects on peak 

irradiance should become more independent)—we observe the opposite in the ATG 

COIL scenarios.  Finally, Smith states when the bandwidths are about the same, a 

combined approach must be used for analysis, such as wave-optics or a combined 

turbulence-TB scaling law.  It is important to note that Smith’s paper dwelt mostly on 

collimated and/or ground-to-space applications, though scaling laws were developed for 

focused, atmospheric cases.  The point is, however, that Smith appears to have 

considered primarily whole-beam blooming with respect to turbulence. 

The atmospheric fluctuation due to turbulence that affect a given beam can be 

divided into two categories, intrabeam fluctuations and whole-beam fluctuations, and the 

TB process responds to them differently.  Intrabeam fluctuations cause local focusing of 

the beam in the optical path which, if the beam is powerful enough in an absorbable 

wavelength, will cause a local thermal lens that spreads that portion of the beam before 

reaching the target.  This is known as Stimulated Thermal Reimann Scattering (STRS) 

[Gebhardt, 1990] and can be thought of as an amplification of the small scale turbulence 

structure.  Whole beam fluctuations are caused by turbulence structures in the atmosphere 

larger than the beam diameter and move the entire hit spot around at the target plane—

these are the kinds of fluctuations the target tracking system attempts to remove from the 

beam (up to the limit of the tracker bandwidth, of course).  As suggested above, when 

this motion is slow compared to the speed of the TB process, the effect is similar to the 

application of a point spread function to a steady-state TB hit spot under no turbulence—

and when fast in comparison, the TB process can be thought of as applying to the time-

averaged beam.   
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 Furthermore, the detrimental interaction between turbulence and TB appears to 

worsen with defocus for many scenarios, as we will demonstrate.  The nature of this 

dependence on defocus appears to be related in part to the fact that, as discussed in the 

previous chapter, defocusing in the presence of TB and the absence of turbulence 

improves peak irradiance by producing a narrower hit spot that, when subject to residual 

motion due to turbulence uncompensated by the tracker, as well as STRS, has a peak 

irradiance more vulnerable to reduction in the time average than is the broader hit spot of 

the focused beam under TB but no turbulence conditions.   

 The bottom line of this finding is that defocus cannot be considered as a surrogate 

for turbulence for an ATG HEL operating in TB conditions.  Rather, defocus becomes a 

parameter not only for optimization of performance but also for understanding the 

complicated interaction between turbulence and TB.  Since turbulence is well researched 

and understood in the ATG domain, we will focus on the interaction. 

 

4.3. Interaction Strehl 

 The Strehl ratio for a treatment is defined in this paper as the peak irradiance 

before the treatment divided into the peak irradiance after the treatment.  Ideally, Strehl 

ratios for treatments under consideration would be independent, in which case, scaling 

laws could be developed for each, and the product of all Strehl ratios would be effect of 

all treatments simultaneously applied to an untreated beam.  As noted above, however, 

for many ATG scenarios, the Strehl ratios for turbulence and TB are not independent.  

Therefore, we define a Strehl ratio for the interaction of turbulence and TB, hereafter 

called the interaction Strehl, and denoted Sinteract.   
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where Sturb|TB is the Strehl ratio for turbulence given TB has been applied (that is the ratio 

of turbulence to no-turbulence peak irradiances under TB conditions).  is the 

diffraction limited peak irradiance with atmospheric extinction applied.  The final two 

lines of Eq. 4.2 are very useful since data on peak irradiance under TB-only conditions 

were widely collected for Chapter 3 results.  Beyond that, one need only know Sturb, 

which is dependent on just a few scenario settings, and to determine the peak irradiance 

under both turbulence and TB conditions.  With Sinteract, an approach to scaling laws that 

decomposes into TB-only, turbulence-only, and the interaction term can be investigated. 

extinctpeakI

 To illustrate the effect of the interaction, we recreate the critical power graphs 

shown in Chapter 3, only this time we include the effect of turbulence.  If turbulence had 

an independent effect, critical power graphs for a scenario with turbulence and no-

turbulence assumptions would have the same critical power point; that is, the graph for 

the with-turbulence assumption would merely be some constant fraction of the one under 

no turbulence.  Figure 4.1 shows this is not the case for the baseline scenario critical 

4-5 



 

power graph (for 30% and 10% obscuration settings) at optimal defocus when Hufnagel-

Valley 5/7 (HV5/7) turbulence is assumed.  Instead, Figure 4.1 shows interaction 

between turbulence and TB worsens as power increases so that the critical power point, 

the maximum of the graph, occurs at a lower power setting when turbulence is assumed 

as described below.  Figure 4.1 also shows that the interaction is worse in the 10% 

obscuration case since the with- and without-turbulence graphs (solid lines) diverge much 

more sharply as power increases than do the 30% obscuration graphs (dashed lines).  

Similar results were obtained regarding turbulence in the perpendicular propagation cases 

as well for the 10% obscuration case.  Also, despite the negative impact of turbulence, 

both in turbulence Strehl as well as interaction Strehl, it is still beneficial for the laser 

system in the presence of turbulence to defocus.  Figure 4.2 shows that there remains an 

approximate 33% benefit to optimal defocusing at 100 kW with either obscuration size.   
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Figure 4.1. Peak irradiance at optimal defocus for baseline scenario by obscuration 
and turbulence assumption. 
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Figure 4.2. Critical power graphs for baseline scenario under HV 5/7 turbulence, by 
obscuration size illustrate defocus is beneficial in the presence of turbulence. 
  

 As can be seen in Figure 4.1, an important effect of turbulence is that it 

diminishes the advantage of the 10% obscuration over 30% that was seen in Chapter 3 

under no turbulence.  Another difference diminished by turbulence between the two 

obscuration assumptions is the advantage of perpendicular propagation over parallel 

propagation scenarios.  Figure 4.3 shows the improvement factor of perpendicular 

propagation at optimal defocus.  Note that the effect was disproportionately large for 30% 

obscuration with no turbulence assumed.  Under turbulence, you can see the effect of this 

scenario change is similar for both obscuration settings.  Even so, as discussed later, it 

appears that perpendicular propagation is always the better operating point unless some 

consideration not accounted for here interferes, such as aero-optic effects at the turret. 
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Figure 4.3. Peak irradiance improvement factor for perpendicular propagation over 
parallel propagation (at optimal defocus) as function of laser power by obscuration 
and turbulence assumption for otherwise baseline scenario. 
 

4.4. ATG Scenarios Considered 

 The baseline scenario in this chapter is the same as in Chapter 3, and the 

variations investigated for turbulence effect are a subset of the variations outlined there, 

with two major differences:  (1) for our case study of a 10% obscuration ATG platform 

under turbulence, we used a 0.4x Bufton wind instead of 0.5x and 0.25x; and (2) we did 

not investigate the effect of the summer atmosphere absorption and extinction, though we 

did show in Chapter 3 that it appears to be strongly aliased with power with respect to the 

effect of defocus.  The Mani atmospheric absorption profile is assumed for all cases in 

Chapter 4.  Sturb for these scenarios, needed for calculating Sinteract, is shown in Figure 4.4, 

and is calculated directly from peak irradiance results for 30 phase screen, turbulence-

only runs for 1x and 2x HV5/7.  The Sturb for the 0.5x HV 5/7 atmosphere is estimated 

from the relationship between all three turbulence multiples determined from 10 phase 
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screen runs applied to the values for the 30 phase screen runs.  As expected and discussed 

in more detail below, when TB was not included in the model, there was little difference 

between the 10 phase screen runs and the 30 phase screen runs under the same strength of 

turbulence assumption (1x and 2x HV 5/7).  As in Chapter 3, both 10% and 30% 

obscuration sizes will be discussed in each section below, where applicable. 
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Figure 4.4. Sturb as function of target slant range for otherwise baseline scenario by 
HV 5/7 turbulence multiple.  (Note origin of vertical axis is not zero.) 
 

4.5. Phase Screen Selection 

 While the determination of the adequacy of 30 phase screens was described in 

Chapter 3, the addition of turbulence to the model required reverification of this result.  

There are two concerns:  (1) Phase screens may be too close together with respect to the 

assumption of independence between the phase screens inherent in the ACS wave-optics 

turbulence modeling technique; and (2) turbulence may interact with the phase screen 

selection resulting in a phase-screen-number dependent Sturb|TB which would imply the 

same dependence in Sinteract.   
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The first concern would be manifested as a significant downward trend in Sturb as 

the number of phase screens is increased for a given scenario.  To test it, we measured 

Sturb at 3, 4.5, 6, and 9 km ranges in an otherwise baseline scenario with ten, 20, and 30 

phase screens, using common random numbers for all ranges for a given phase screen 

setting to reduce variance.  The resulting measurements are shown in Table 4.1, and 

while there is a very slight downward trend in the 3 km range scenario (which is the most 

stressing case) as phase screen number increases from ten to 30, there was no general 

downward trend to cause concern.  The 4.5 km range case actually has a slight upward 

trend. 

Table 4.1.  Values of Sturb to check adequacy of phase screen count to model 
turbulence in ACS at otherwise baseline scenario. 

Number of 
phase screen 

Target slant range 
3 km 4.5 km 6 km 9 km 

10 0.857 0.828 0.815 0.765 
20 0.856 0.835 0.827 0.798 
30 0.854 0.841 0.816 0.780 

 

 The second concern would manifest itself as a dependence of Sturb|TB upon phase 

screen number, as increased from the planned operating point of 30.  In other words, the 

concern here is that 30 phase screens is too few, evidence of that being an increase in the 

number of phase screens causing a significant increase in Sturb|TB.  Sturb|TB was determined 

for the baseline scenario at a more conservative 150 kW to be 0.742 for the 30 phase 

screen case, and 0.746 for the 40 phase screen case.  As a result of the previous finding 

and this finding of only marginal, and perhaps random, effect on Sturb|TB by phase screen 

number, 30 phase screens was selected as the operating point of choice. 

 It was particularly important to find this stable operating point because we know 

that Sturb|TB and Sinteract can be very sensitive to phase screen number, particularly when 
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that number is too low and especially when ND is also high.  For example, Figure 4.5 

shows the value of Sinteract as a function of power for ten phase screens and 30 phase 

screens for an otherwise baseline scenario.  As illustrated, too few phase screens not only 

adversely affects the modeling of thermal blooming (as discussed in Chapter 3), it has the 

additional liability of potentially overestimating the interaction effect between thermal 

blooming and turbulence.  The graph for ten phase screens in Figure 4.5 was presented at 

the Directed Energy Professional Society Modeling and Simulation Conference, Tampa 

FL, March 2005 [Long].  This publication corrects that error, as does our 2007 article 

published in Journal for Directed Energy [Long, Miller, Brigantic, Goda].  However, it is 

likely that it would have taken longer to discern the prevalence of Sinteract in this operating 

regime had our unfortunate error of using ten phase screens (a common setting in the 

industry at the time) not made the effect so obvious. 
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Figure 4.5. Sinteract at optimal defocus for otherwise baseline scenario as function of 
power, by phase screen setting in ACS.  An insufficient number of phase screens 
exaggerates the interaction of TB and turbulence. 
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4.6. Relationship of Sinteract with Defocus and Power 

 The interaction between turbulence and TB in these ATG scenarios can occur at 

all defocus values at which we hope to increase peak irradiance by that means; however, 

at optimal defocus, Sinteract is much stronger for the 10% obscuration case than for 30% 

obscuration.  This is due in part to the fact that the optimal defocus for the former is 

shorter than for the latter, putting the optimal point in a defocus region where Sinteract is 

worse for both obscuration sizes.  In addition, Sinteract has a larger impact on the 10% 

obscuration cases for all defocus values.  Figure 4.6 shows Sinteract for the 10% 

obscuration case as a function of defocus, by laser power.  The circled points on the 

graph represent the defocus value for optimal peak irradiance with the baseline scenario 

including 1x HV5/7 turbulence.  Note that for all power levels, the optimal defocus is 5% 

(300 m) of target slant range (6000 m).  This is in contrast to the no-turbulence cases 

shown in Chapter 3, where the optimal defocus distance increased slightly with power for 

the 10% obscuration case.  (See Figure 3.6.)  The reason for the difference is that with 

respect to focal length, the negative slope of Sinteract offsets the positive slope of STB when 

turbulence is present. 
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Figure 4.6. Sinteract for the 10% obscuration case as function of focal length by laser 
power for otherwise baseline scenario. 
  

 The remarkable consistency of the optimal focal range across power settings 

under turbulence led to selection of 5% defocus as the static defocus multiple for 

increasing peak irradiance in the case study, discussed later in this chapter.  (However, as 

the reader will see in that section, the optimality of the 5% setting was not explored in the 

case study, and while significant peak irradiance improvement always occurred over the 

focused case, 5% defocus is very likely not an optimal setting for many of those 

experimental points.) 

 For the 30% obscuration case with 1x HV5/7 turbulence, Sinteract was not a major 

contributor to peak irradiance degradation until laser power reached 150 kW, and in no 

case is Sinteract worse than a similar scenario with 10% obscuration.  This is shown in 

Figure 4.7.  Further, the defocus setting for optimal peak irradiance is the same as for no 

turbulence and 30% obscuration, the reason being that optimal focal length is much 
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longer for 30% obscuration which places Sinteract in a region where it is fairly flat with 

respect to defocus.   
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Figure 4.7. Sinteract for the 30% obscuration case as function of focal length by laser 
power for otherwise baseline scenario. 
 

 It is interesting to note in Figure 4.7 that, as with the 10% obscuration case, the 

30% obscuration Sinteract curve at 200 kW has strong downward slope at about 5% 

defocus.  The resulting negative mode in the Sinteract curve that occurs between focal 

lengths 6300 m and 6900 m corresponds to the first mode in peak irradiance in the  

200 kW baseline scenario under no turbulence shown in Chapter 3 and in Figure 4.8.  

Figure 4.8 also shows the peak irradiance response to defocus of the 200 kW baseline 

scenario with 1x HV 5/7 turbulence, and shows that the first mode is washed out by 

turbulence.  
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Figure 4.8. Peak irradiance as function of defocus for 200 kW baseline scenario 
(30% obscuration) under two turbulence assumptions: no turb and 1x HV 5/7. 
 

 The single mode that occurs in the same 6300 m to 6900 m focal length region for 

the 10% obscuration case (Figure 4.9) and 200 kW is washed out even more strongly than 

the first mode (solid line) in Figure 4.8.  Figure 4.9 shows the same scenario as Figure 4.8 

except for the 10% obscuration case.  Recall that under the no-turbulence assumption, the 

optimal peak irradiance for 10% obscuration cases generally higher than it is for 30% 

obscuration.  Since power arriving at the target plane is equivalent, this implies that 

irradiance pattern for the former is sharper and more narrow than the latter, and images of 

the target plane bear this out.  Also, since residual turbulence for the two obscurations is 

the same, the sharper pattern will be affected more severely by turbulence resulting in 

worse Sinteract for the 10% obscuration cases.  Similarly for the 10% obscuration case, 

since the no-turbulence peak irradiance increases and becomes sharper with defocus, 

Sinteract worsens as a function of defocus.  This is why the optimum peak irradiance under 
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1x HV 5/7 turbulence occurs at a shorter focal length than under no turbulence in the 

10% obscuration cases.   
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Figure 4.9. Peak irradiance as function of defocus for 10% obscuration and 200 kW 
for otherwise baseline scenario under two turbulence assumptions: no turb and 1x 
HV 5/7. 
 

 Finally, we present the Sinteract at optimal, or near-optimal, defocus as a function of 

laser output power by obscuration setting and turbulence assumption.  The case study 

data allowed the calculation of Sinteract for 0.5x HV 5/7, but only for 10% obscuration and 

50 and 100 kW settings.  Figure 4.10 shows that Sinteract is clearly worse at optimal peak 

irradiance for the 10% obscuration case, and even the Sinteract at 0.5x HV 5/7 is not 

insignificant for the 10% obscuration case at 100 kW.  Also, due to strong aliasing 

between absorption and power discussed in the previous chapter, the low Sinteract values at 

higher power settings are relevant even if no system with that power setting is 

envisioned.  The baseline assumption is the 80-percentile winter atmosphere by Mani, 

whereas an 80-percentile summer atmosphere will roughly double the thermal blooming 
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distortion strength.  Even though no direct calculation of Sinteract was accomplished for a 

different atmospheric assumption in this research, there is every reason to suspect the 

effect of power on Sinteract is aliased with the effect of absorption, even as the two are 

aliased with respect to defocus effect on peak irradiance (Figures 3.21 and 3.22).  In other 

words, Sinteract for 10% obscuration, 50 kW, 80-percentile summer atmosphere case will 

likely be about 0.8, the approximate value of Sinteract for 10% obscuration, 100 kW, Mani 

atmosphere case. 
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Figure 4.10. Sinteract at optimal defocus as a function of laser power by obscuration 
and turbulence assumption for otherwise baseline scenario. 
 

4.7. Velocity Vector Relative to Target 

 In Chapter 3, there was seen to be a substantial benefit to flying with velocity 

vector perpendicular to the target vector over the case of flying level towards the target 

while propagating the laser.  Here we investigate the same comparison with turbulence 

added.  As mentioned earlier, we find that the perpendicular propagation remains the 

better performance point for both obscurations, but there are some interesting differences.   
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The primary difference between parallel and perpendicular propagation under 

turbulence is that, due to imperfect tracking, Sturb is worse in the perpendicular case even 

though the atmospheres are the same.  We already saw in Chapter 3 that the ND for the 

perpendicular propagation is lower due to the higher effective wind velocity through the 

beam tube.  However, that higher wind velocity results in a higher turbulence bandwidth 

when turbulence is present, which has two effects:   

First, the larger-scale, whole-beam tilt turbulence passes through the beam tube at 

a higher speed in the perpendicular case, but since the bandwidth of the tracker is 

constant, there is an increase in the residual tilt turbulence causing a reduction in Sturb due 

additional high-bandwidth spot motion at the target.  Also, this motion will have a 

differential impact in the time-averaged irradiance pattern depending on the sharpness of 

the peak intensity point of the beam spot under a no-turbulence assumption:  As 

discussed above, the sharper the peak under no turbulence, the more vulnerable is the 

time-averaged peak irradiance to a given beam dynamic due to turbulence.   

Second, the smaller-scale turbulence likewise moves through the beam tube at a 

higher speed, but since the tracker does not compensate for these higher order 

fluctuations, this does not have an additional effect on Sturb; however, since Sinteract arises 

at least in part from STRS, the distortion arising from local focusing and heating due to 

smaller-scale turbulence, the increase in bandwidth could improve (increase) Sinteract since 

there is less time for local focusing to cause thermal lens development, and if so, offset 

the effect of higher-bandwidth whole-beam turbulence. 

Figure 4.11 shows the peak irradiance profile with respect to defocus for both 

velocity vectors under turbulence plus that for perpendicular propagation under no 
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turbulence with the 30% obscuration, and Figure 4.9 shows the same for the 10% 

obscuration, all at 200 kW. 
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Figure 4.11. Peak irradiance as function of defocus for baseline scenario with 30% 
obscuration comparing perpendicular propagation performance to parallel case 
with turbulence and to perpendicular with no turbulence. 
 

 All of the points on the graphs in Figures 4.11 and 4.12 represent ACS runs with 

the exception of the perpendicular propagation lines with turbulence in each.  For those, 

the focused case (focal length = 6000 m) and the focal length set equal to optimal focal 

length without turbulence for respective obscuration sizes were run in ACS.  To estimate 

the points between the calculated points, a linear relationship between Sturb|TB and focal 

length was assumed based on experience in this operating regime.  Then calculating the 

estimated Sinteract by Eq 4.2, and applying that result along with known Sturb to the no-

turbulence peak irradiance values, the estimated peak irradiance profile under turbulence 

is determined.    
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Figure 4.12. Peak irradiance as function of defocus for baseline scenario with 10% 
obscuration comparing perpendicular propagation performance to parallel case 
with turbulence and to perpendicular with no turbulence. 
  

As with the parallel propagation cases, the 10% obscuration has an Sinteract that 

worsens considerably with defocus, while Sinteract for the 30% obscuration case is 

approximately the same at focused operation and at optimal defocus for the no-turbulence 

case.  The result in the latter case is that the optimal operating point is the same 

regardless of the turbulence assumption.  However, in the former case, since Sinteract 

worsens with defocus, the optimal focal length under turbulence is shorter than for the 

no-turbulence case.  Figure 4.13 shows the value for Sinteract at focused and optimally 

defocused conditions for parallel and perpendicular propagation vectors, for both 

obscuration assumptions.   
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Figure 4.13. Sinteract at 200 kW as function of focus setting by obscuration size and 
propagation vector for otherwise baseline scenario. 
 

4.8. Target Range   

 The impact of target range on ATL performance with respect to turbulence lies 

both in the interaction Strehl and in the performance difference between the 10% and 

30% obscuration sizes.  Figure 4.14 shows the baseline scenario (100 kW) interaction 

Strehl for the 30% obscuration case as a function of range at the optimal focal length for 

four range values and the same for 10% obscuration for two range values.  Note that for 

the 30% obscuration case, shorter range Sinteract is actually greater than one, but that it 

drops below unity and decreases with range.  The explanation for this is that at close 

range, non-turbulence ND is so high due to tight focusing that time-averaged turbulent 

motion of the beam reduces ND, offsetting thermal blooming more than the effect STRS 

has in contributing to it; however, at longer ranges (and all ranges for 10% obscuration) 

STRS dominates resulting in Sinteract < 1.0.  The Sinteract function is plotted for two levels 

of turbulence (1x and 2x HV 5/7), and note that for worse turbulence, the effect whether 
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positive or negative appears to be amplified.  None of these 30% obscuration interaction 

effects is terrible, especially compared to the 10% obscuration results on the same graph.  

Note that the vertical axis in Figure 4.14 does not have zero at the origin.  
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Figure 4.14.  Sinteract for baseline scenario (100 kW) by turbulence multiple and 
obscuration size as function of slant range. 
 

 This differential effect based on obscuration size, already noted earlier, obviously 

reduces the advantage of the 10% obscuration seen in Chapter 3 as a function of range.  

Figure 4.15 repeats Figure 3.12 but adds the optimal defocus improvement factors with 

HV 5/7 turbulence included.  The benefit of defocus for 30% obscuration is improved 

while that for the 10% obscuration is somewhat diminished, which could make a larger 

obscuration more advantageous in the design trade space. 
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Figure 4.15. Improvement of target peak irradiance at optimal defocus over focused 
case as function of range to target of otherwise baseline scenario, for no turbulence 
and HV 5/7 turbulence cases.  Note: 10% obsc., no turbulence, dash-dot line is 
comprised of 20 phase screen results; 10% obsc. & 30 phase screen result at range = 
6 km (solid diamond) added as reference to suggest 20 screen line may be biased a 
bit low.   
 

 Figure 4.16 repeats Figure 3.13 from Chapter 3 which had shown a 

disproportionate advantage of the 10% obscuration which has been diminished due to 

interaction Strehl to now being merely consistent with the increase in the area of the 

propagating aperture that results from the smaller obscuration and 0.5 m fixed outer 

diameter.  Again, while the 10% obscuration may well be the best design point, 

performance of competing obscuration sizes should be evaluated under turbulent rather 

than no-turbulence conditions. 
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Figure 4.16.  Peak irradiance improvement factor of 10% obsc. relative to 30% 
obscuration by range for otherwise baseline scenario by turbulence assumption.   
 

4.9. Case Study 

Using the knowledge gained from this and the previous chapters’ work, a case 

study was undertaken to examine the effect of defocus on an ATL with a 10% 

obscuration in the presence of turbulence.  Given the 10% obscuration, only two focus 

settings were examined at each operating point: focused and 5% defocus, which was 

shown to be a relatively stable approximation of the optimal defocus setting for 10% 

obscuration cases.  With the exception of altitude and the variable settings in Table 4.2, 

the scenario is the same as the baseline scenario with 10% obscuration.  Scenario 

variables were examined at only two settings, which we will denote “high” and “low” for 

each; the altitude variable is an exception to this since we examine altitudes of 2, 3, and 4 

km. 
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Table. 4.2. “High” and “Low” settings for variables in the case study for otherwise 
baseline scenario at 10% obscuration. 
Scenario variable Low setting High setting 
Power 50 kW 100 kW 
Range 4.5 km 6 km 
Turbulence 0.5x HV 5/7 1x HV 5/7 
Target azimuth 0 deg (i.e., parallel) 90 deg (i.e., perpendicular) 
Wind speed at ground 4 m/s 10 m/s 
 

First, we look at the improvement in peak irradiance due to defocus at each 

altitude as a function of the settings in Table 4.2.  Figure 4.17 shows three graphs to 

illustrate the benefit of 5% defocus.  The pivot point where all lines intersect in each 

graph represents the average result across all experimental points at the respective 

altitude, whereas each point on the graph represents the average of all experimental 

points with the given variable setting at that altitude.  For example, at 2 km altitude, 5% 

defocus improves irradiance by about 40%.  This is slightly improved upon at 3 km 

altitude, although, power and ground wind speed are clearly the largest factors affecting 

defocus improvement (approximately 60% average improvement for 4 m/s wind, 58% for 

100 kW).  Finally, defocus improvement jumps to 63% average across all experimental 

points at 4 km altitude, with power and wind providing practically all the variation. 
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Figure 4.17. Irradiance improvement factor (vertical axis) due to 5% defocus at 2 
km, 3km, and 4 km (top to bottom, respectively) by case study variable setting. 
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The result is evident that defocus can provide substantial performance increase 

(30-40% average for 50 kW, 50-90% average for 100 kW, depending on altitude).  The 

fact that higher altitude reduces the variation in improvement caused by turbulence 

multiple, slant range, and target azimuth suggests a scaling law for defocus effect on 

thermal blooming would be easier to determine for higher altitude platforms.  Figure 4.18 

illustrates the combined wind and power effects on defocus improvement as a function of 

platform altitude; again each point is the average of all other points with same power, 

wind, and altitude variable setting.  It also illustrates the aliasing of power and wind with 

respect to improvement due to defocus:  Note the 50 kW-4 m/s defocus improvement 

graph closely overlays that of the 100 kW-10 m/s graph. 
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Figure 4.18. Improvement factor of 5% defocus as function of platform altitude by 
wind and power setting. 
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Figure 4.19. Irradiance in W/m2 (vertical axis) with 5% defocus at 2 km, 3km, and 4 
km (top to bottom, respectively) by case study variable setting. 
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Next we look at the effect of altitude on irradiance performance.  Figure 4.19 

shows that increased altitude from 2 to 4 km, keeping range constant, improves irradiance 

by more than a third, averaged across all the experimental points.  This improvement at 

higher altitude is a result of reduced turbulence and absorption in the more vertical beam 

path, in addition to the increased responsiveness to defocus observed earlier for higher 

altitude.   The figure shows that slant range has a huge effect on irradiance, which is to be 

expected, and that as altitude increases, the effects of wind and azimuth start to diminish 

relative to the impact of laser power.  So, not only does a higher altitude operating point 

allow taking greater advantage of designed laser power, it also reduces the impact of the 

target azimuth during engagement.  While the perpendicular azimuth is still better, the 

target azimuth scenario feature is one an operating crew may have little control over 

when engaging targets in a time sensitive or highly threatening environment, so reducing 

the effect of fact-of-life suboptimal engagement azimuths, among the many other benefits 

of operating at higher altitude, should be weighed against any downsides to operating at 

higher altitude. 

Figures 4.20 and 4.21 show the effects of altitude on irradiance for 50 and 100 

kW settings, respectively.  These results are broken by slant range and target azimuth.  

This shows, again, the clear advantage of the perpendicular propagation, particularly at 

higher ND values caused by higher absorption at lower altitude and higher power.  Also, 

there is a geometric component to the reduced effectiveness of perpendicular propagation 

as altitude increases:  For a given slant range, the higher the altitude of parallel 

propagation (defined in Chapter 3 as a target vector having component vectors parallel 

only to the ATL’s velocity and altitude vectors) at a target on the ground, the greater the 
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angle between the propagation vector and the velocity vector.  This results in increased 

effective wind through the beam tube reducing ND, partially accomplishing what 

perpendicular propagation causes at lower altitude. 
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Figure 4.20. Peak irradiance at target for 50 kW output power as a function of 
platform altitude by target range and target azimuth averaged across all other 
settings in the case study. 
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Figure 4.21. Peak irradiance at target for 100 kW output power as a function of 
platform altitude by target range and target azimuth averaged across all other 
settings in the case study. 
 

 This case study is useful for illustrating improved ATL operating points for the 

scenario considered, particularly for the assumption of a 10% obscuration.  While earlier 

results presented in this chapter indicate that 5% defocus may be stable near the optimum 

defocus, such was not shown for every setting in the case study.  Optimal irradiance at 

each design point almost certainly occurs at at least a slightly different defocus setting, 

but clearly 5% defocus provides extensive benefit across the design points and suggests 

using defocus to improve irradiance may work with open loop settings based on 

experiments with the actual system, as well as further study.  
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4.10. Conclusion 

This research started with an important negative finding that defocus cannot be 

used as surrogate turbulence in the presence of TB for the ATG case as originally hoped.  

However, this finding led to realization in the ATL analytic community of significant 

negative turbulence-TB interaction in these scenarios. 

The error in the previously common approach of using ten phase screens for 

ATL-type scenarios actually assisted in detecting the interaction phenomenon.  As 

discussed in Chapter 3, 30 phase screen are required for adequate wave optics modeling 

of peak irradiance, particularly the latter’s response to defocus.  Additionally, too few 

phase screens inappropriately amplifies Sinteract which, in our effort, boosted Sinteract 

detectability when gathering data for and modeling irradiance and defocus under the 10 

phase screen assumption.  Concerns about 30 phase screens being too numerous and 

therefore undermining performance of the turbulence wave optics model appear to be 

unfounded in the ATL cases at turbulence strengths up to 2x HV5/7. 

Sinteract is much worse for 10% obscuration than for 30% obscuration at optimal 

defocus in the scenarios investigated.  This appears to be related to the phenomenon that 

causes 10% obscuration performance to be significantly better than 30% obscuration in 

no-turbulence cases at optimal defocus, which is that the former’s more peaked irradiance 

pattern is more vulnerable to being knocked down by the time-averaged motion due to 

turbulence.  The result of this is that 10% obscuration performance at optimal defocus 

under turbulence is not disproportionally superior as it is under the no turbulence 

assumption.   It would be useful to further investigate this disproportionality at different 

turbulence settings since there is such high sensitivity in the response between 0x and 1x 
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HV5/7.  This finding suggests that, especially when defocus is considered, not accounting 

for Sinteract inappropriately imbalances the obscuration-size trade space towards the 10% 

obscuration, though of course many other factors will be involved in the obscuration size 

decision. 

Despite the foregoing, a primary finding from this chapter that still strongly 

favors the 10% obscuration is the near constant defocus length for optimal performance 

across many scenarios.  From Chapter 3, recall that no-turbulence optimal defocus for the 

30% obscuration case (the baseline scenario) varied widely based on power, range, and 

other aliasing factors that affect ND.  In this chapter, a stable Sinteract is reported with 

respect to defocus for the 30% obscuration, meaning turbulence and non-turbulence 

optimal defocus lengths are almost equivalent.  No-turbulence optimal defocus for 10% 

obscuration scenarios were found to be in a much tighter range.  When adding 1x HV5/7 

to these scenarios, the phenomenon of worsening Sinteract as a function of defocus 

counterbalances the small increase in optimal defocus as ND increases for no-turbulence 

cases.  The result for 10% obscuration cases is that 5% defocus is approximately optimal 

for the otherwise baseline scenario at all power settings.  Since power is aliased with 

absorption and wind, this is a strongly significant result, at least for HV5/7. 

The most important finding out of the case study is the superiority of higher 

altitude with respect to performance, primarily in terms of improved peak irradiance on 

target, but also importantly as a means to offset variation in performance that occurs as 

the horizontal component of the target vector varies between propagation parallel to the 

velocity vector (shooting straight ahead and down) and perpendicular to the velocity 

vector (shooting to the side and down).  However, target range is of course also highly 
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influential to peak irradiance performance and must be traded with altitude to address 

vulnerability.  However, if vulnerability is mainly a function of slant range (and not 

elevation or ground range, for example), the higher altitudes provide the best 

performance. 

  

 

 



 

5. Summary and Recommendations 

 

5.1 Introduction 

 The contributions of this research into modeling the case of the air-to-ground 

thermally bloomed HEL are summarized below.  With some detectable overlap as one 

reads below, these contributions can be grouped into the following categories: 

(1) Consistent benefit of defocus on peak irradiance (Ipeak) 

(2) Importance of central obscuration size 

(3) Interaction of thermal blooming and turbulence  

(4) Wave-optics modeling issues in ATL environment 

(5) COIL ATL operational considerations 

(6) Analysis and advancement of existing scaling laws 

(7) Improved research techniques 

Intermingled with discussion of these contributions will be focused suggestions for 

additional research.  A later section will elaborate on general research suggestions. 

 

5.2. Summary of Research Contributions 

5.2.1. Improvement with Defocus 

In a generalized space of reasonable ATL scenarios, it was found that defocusing 

the beam provides a simple and effective way to improve peak irradiance at target when 

thermal blooming potential is significant.  This is important since defocusing is typically 

available in laser systems even in the absence of higher order wavefront correction 

functionality.  The amount of improvement gained by defocusing varies according to the 

scenario variables, but for typical ATL scenarios, the improvement seems to be at least 
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20% and as high as 100% or more in some cases.  Beyond defocusing alone, adding 

higher order correction wavefront correction may further improve peak irradiance but this 

approach can be quite expensive in terms of design and engineering resources, and the 

incremental gain in the thermal blooming environment (beyond that achievable from 

defocus) may not justify the expense—although the latter would be an excellent subject 

of additional research. 

 

5.2.2. Defocus Stability for 10% Obscuration 

Additionally, for the 10% obscuration, it was found that a 5% defocus was 

optimal or near optimal for many ATL scenarios and at least quite beneficial in every 

scenario of the case study of Chapter 4.  On the other hand, for a 30% obscuration, the 

optimal defocus was less stable and more dependent upon the focused-case thermal 

blooming distortion number.  Further, we found the addition of turbulence to the model 

affects the 10% obscuration case more than the 30% obscuration case:  For the 10% case, 

turbulence-thermal blooming interaction Strehl is both worse and has a larger negative 

partial derivative with respect to defocus distance.  This difference in impact has to do 

with the reasons the 10% obscuration case generally has higher irradiance than the 30% 

case with no turbulence, that is, the 10% case has a higher peak irradiance resulting from 

a narrower, more focused beam spot.  The narrower beam spot is more susceptible to 

reduction due to turbulence than the less-peaky, wider beam spots of the 30% obscuration 

case.  The lesson here is that turbulence is something of an equalizer of performance 

between the two obscuration cases (though optimal defocus is still more stable for 10% 

case), and the warning is that modeling ATL performance with a 10% obscuration 
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affected by thermal blooming only, and no turbulence (a common temptation due to 

computer run time cost), will produce overly optimistic results that simply applying 

turbulence Strehl after the fact will not correct, particularly when trying to capture the 

defocus effect.  The warning is even sterner for modeling 30% obscuration cases with 

thermal blooming and defocus without turbulence, since higher order effects that appear 

to offer attractive performance will arise at defocus distances that turn out to be 

suboptimal when the reality of turbulence is added. 

 

5.2.3. Sensitivity to Obscuration Size 

An unexpected difference in performance between the 10% and 30% obscurations 

and defocus in thermal blooming environment was discovered.  While this difference 

may be mitigated by turbulence, as discussed above, since much thermal blooming 

modeling is accomplished without the turbulence assumption (which requires multiple 

runs for averaging), scientists need to be aware that nonlinearities in thermal blooming 

effect, apparently resulting from different far field patterns, may arise as the obscuration 

parameter is varied.  It will be important to test the design region with turbulence factors 

applied to ensure optimalities found during system engineering are not undone due to the 

turbulence-thermal blooming interaction.  

 

 5.2.4. Thermal Blooming-Turbulence Interaction 

For those same ATL scenarios, when thermal blooming is significant, as 

mentioned above, we have found that an interaction between turbulence and thermal 

blooming arises that usually reduces peak irradiance performance.  This interaction 
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worsens with ND, causing an even tighter limitation on critical power than thermal 

blooming alone.  The effect appears worse for the 10% obscuration critical power, which 

for the baseline scenario has a critical power of about 250 kW.  With turbulence, critical 

power is reduced to 100 kW.  For the 30% obscuration, the analogous critical powers are 

200 kW and 125 kW without turbulence and with turbulence, respectively (though the 

10% case retains a performance advantage).  The common practice of applying 

turbulence independently will not cause the critical power to shift. 

  

 5.2.5. Phase Screen Count 

For ATL-like scenarios in which thermal blooming is significant, the common 

standard of using ten phase screens in wave optics models is inadequate to model thermal 

blooming both with no turbulence assumed and also with turbulence present.  In the no-

turbulence case, the effect of ten phase screens being too few is much more noticeable at 

defocused settings than focused settings, which in addition to the habit of not 

simultaneously modeling turbulence, explains why this standard has not been 

problematic. When turbulence is added to the wave optics models however, the fact that 

ten phase screens is too few is noticeable regardless of focus setting.  Too wide spacing 

of the phase screens for these cases, especially near the target where thermal blooming is 

strongest and turbulence is strongest, inappropriately magnifies the thermal blooming and 

turbulence interaction—this is due to long moment arms between the phase screens that 

allows local focusing to occur in the model that would be offset by thermal blooming in a 

more finely modeled atmosphere.  This in itself is noteworthy since the negative 

interaction is little reported in literature, suggesting this interactive regime of modeling 
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has much more to discover in it.  At the 2005 Directed Energy Symposium, several 

researchers approached, glad to hear our presentation [Long et al. 2005] because they 

were seeing similar results and did not have good explanations for them. 

 

5.2.6. Defocus Improvement at Lower ATL Powers 

Based on this research, aliasing between power, transverse wind, and absorption 

could lead to significant thermal blooming even at a planned ATL power of 50 kW.  In 

the baseline scenario, the 50 kW case experienced some thermal blooming such that 

defocus was helpful, but the results were not as dramatic as they were for higher powers.   

However, our baseline scenario can be considered somewhat optimistic since we assumed 

a relatively fast 10 m/s (20 knot) ground wind, and thermal blooming is reduced in 

proportion to ground wind.  Realistically, ground winds can very often be less than half 

or even a quarter of that velocity, meaning the 100 kW and 200 kW analyses for the 

baseline scenarios would be applicable to the 50 kW case---and for those higher powers, 

defocus is much more helpful.  The same goes for absorption.  The baseline scenario was 

pessimistic for winter (worse than 80% of winter atmospheres), but the equally 

pessimistic summer case has about twice the absorption, so the 100 kW analysis would 

be applicable.  Further, these are independent so that together, the thermal blooming 

effect could be that of a 400 kW laser which is past the critical power point, at least for 2 

km altitude.  The suggestion here is that defocus should still be quite helpful to a 50 kW 

ATL and the warning is that thermal blooming could be devastating in some scenarios, 

unless better operating regimes are found, such as higher altitudes.   
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5.2.7. Higher Altitude, Transverse Propagation Improve Performance 

During this research most concepts of operation discovered had the ATL 

operating below 3 km altitude.  Also, little discussion was found on the subject of the 

propagation vector relationship to the velocity vector.  This research shows that 

significant performance improvements in the presence of thermal blooming can be gained 

by having the ATL operate at higher altitudes for a given range, or equivalently that 

range could be increased at higher altitudes to get similar performance to a lower altitude 

shorter range engagement.  Also, engaging the target with a side (perpendicular) shot 

significantly improves performance over engagement of the target while flying towards it 

(parallel shot).   The advantage of the perpendicular shot attenuates with altitude so the 

two approaches could be traded off to find the best engagement geometry that also 

affords the platform security against ground-to-air threats.  However, the higher altitude 

(between 3 and 4 km) appears to be the best position when the crew is uncertain where 

the next target will be.  Additionally, when the engagement takes advantage of increased 

altitude or a more perpendicular shot, the benefit of defocus is magnified, making it all 

the more important to explore this effect experimentally, both pre-design and post-design.  

One unknown that should be the subject of future research is the aero-optic effect of 

perpendicular propagation.  If turbulence across the face of the exit aperture degrades the 

beam, there may be an optimal angle off the velocity vector (probably scenario dependent 

and likely more forgiving at higher altitude) to be discovered that is short of full 

perpendicular propagation.  Another bit of research that would be useful is development 

of critical power graphs for higher altitude.  This could reveal whether higher power 

lasers in the COIL wavelength could be effectively deployed in the ATL mission. 
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5.2.8. Improved HELEEOS Scaling Law Model 

During this research, a scaling law improvement was discovered for the widely-

used SAIC’s HELCOMES HEL model, which was the basis for AFIT’s HELEEOS 

scaling law model.  The original, uncorrected formulation had suppressed the sensitivity 

of ND to output power due to overfitting for other parameters at 50 kW only.  We showed 

that linear scaling of the HELCOMES ND for output power vastly improved accuracy of 

the model for other powers ranging from 10 to 200 kW for the air-to-ground scenario.  

HELEEOS authors quickly incorporated the change.   

 

5.2.9. Scaling Law Consistency Analysis Technique 

A technique was crafted and demonstrated in this research that can be used to 

determine consistency of a scaling law in all of its variables.  The purpose of a scaling 

law is to find accurate relationships between the factors that affect a laser’s performance, 

usually in term of Strehl which is the ratio of peak irradiance performance after 

application of a factor (or set of factors) to performance prior to application.  By 

representing such relationships, scaling laws intend to reduce dimensionality of the 

problem by rolling several factors into a single scaling variable.  In thermal blooming 

analysis, ND is the scaling variable we seek to define for which there is a one-to-one 

relationship with thermal blooming Strehl.  In a good scaling law, the effect of a change 

in a factor (e.g., defocus or power) on ND should preserve the relationship between ND 

and thermal blooming Strehl as the latter is determined from application of the factor.  In 

other words at every value of ND, the derivative of Strehl with respect to ND should be the 
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same regardless of which factor is changed.  When this derivative is discovered to have 

different values for changes to different factors in the ND equation, the scaling variable 

can be said to be inconsistent and that a better relationship between factors should be 

found for the scaling variable. 

 

5.2.10. Defocus Scaling Law Structure 

This research identified an adjustment to the Breaux ND, a successful focused-

case scaling law, by using the Smith focus correction factor to craft an equally successful 

defocused scaling law and utilized the consistency analysis described above to evaluate 

the success of the adjustment.  If defocus is going to be a common approach for ATG 

lasers, it will be useful to build scaling laws that represent the amount of improvement as 

a function of defocus.  We showed that Breaux’s ND formulation was unable to account 

for the effect of defocus due to inherent static assumptions about beam spread due to 

thermal blooming.  This renders the Breaux law only suited for focused case use in the 

ATG regime.  However, application of the Smith correction factor, which he derived for 

a completely different scaling law, was determined to be effective for the Breaux law.  

The combined formulation preserves the advantages of Breaux, but adds the flexibility of 

defocusing.  It also suggests minimal modifications would be necessary to existing code 

that uses the Breaux law as a basis. 

 

5.2.11. Wave Optics Processing Improvements 

This research resulted in technique to leverage AFIT’s linux blade server to run 

many ACS scenarios at once, tremendously enabling our research (to include recovery 

5-8 



 

from the 10 phase screen problem discovered late in research) and vastly accelerated 

HELEEOS team to build up experimental design tie points.  The HELEEOS design team 

has been able to run thousands of scenarios using this approach, whereas when trying to 

run using the High Performance Computing Center, runs were very difficult to get 

started, and when started, frequently terminated before execution completion.  We also 

found that despite early advice, it was more efficient to conduct several runs using a 

single processor each rather than attempting to use multiple processors to speed up a 

single run. 

 

5.3. Recommendations and Suggestions for Future Research 

 5.3.1. Power-in-the-Bucket Scaling Law 

This research initially attempted to investigate the development of a scaling law to 

address power-in-the-bucket (PIB) performance of a laser system rather than peak 

irradiance which is the common practice.  In this effort, there was tremendous success in 

developing non-linear techniques that fit Gaussian surfaces, bivariate Gaussian surfaces, 

and distorted versions of the foregoing to beam spots that had been subjected to thermal 

blooming.  The results were particularly successful when fitting to irradiance values 

larger than 1/e times the peak value when fitting to the main lobe of the beam spot.  

However, since this was a multi-dimensional scaling law we were seeking, for a PIB 

measure, it was important to preserve power in predicted Gaussian fits.  This meant we 

could not fit the parameters independently, but had to constrain them to the power 

propagated.  The obvious parameter to fit independently is peak irradiance, so we went 

back to that in hopes of perfecting those scaling laws.  The next step would be 
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development of derivative scaling laws (that depend on accurate peak irradiance 

prediction) for the purpose of predicting power inside a given radius around a target 

aimpoint.  Initial findings are that only one or two more parameters would be needed to 

develop an accurate PIB scaling law from an accurate peak irradiance scaling law.  The 

attraction to PIB measures are that the effects are more intuitive and physical than mere 

peak irradiance at a point, and the performance is less sensitive to range.  Also, it may be 

easier to develop vulnerability models from a PIB perspective than a peak irradiance 

perspective.  Finally, peak irradiance limited approaches may lead to system designs that 

are optimal in a narrow range of assumptions that may not be robust in real engagements. 

 

5.3.2. Higher Order Approaches 

It is important to keep in mind that application of defocus to a thermally bloomed 

beam in the ATL environment is probably not best thought as a phase correction.  Rather, 

it is a trade between thermal blooming Strehl on the one hand and defocus Strehl on the 

other.  With increased defocus in our ATL scenarios, the value of ND decreases which 

results in thermal blooming Strehl increasing faster than defocus Strehl decreases.  This 

causes peak irradiance to rise until the slopes of both Strehl profiles (defocus and thermal 

blooming) are equal and opposite as a function of defocus.  There may be other, higher 

order shapes to explore for effect, in particular a cylinder.  Since it is the beam spreading 

transverse to the wind vector that contributes most to reduced peak irradiance, application 

of cylinder (one-dimensional prespreading of the beam) to forestall thermal blooming in 

substitution for some defocus could result in even higher peak irradiances.  There are 

many challenges with this approach: (1) Investment in capability to apply cylindrical 
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prespreading would be expensive, so performance above defocus alone would have to be 

significant to justify; (2) the Smith correction factor is based on defocus.  An additional 

correction factor would be needed to further adjust the Breaux ND to account for 

cylindrical prespreading; (3) precise knowledge of wind direction and ability to orient the 

cylindrical prespreading with it would be needed.  Related work was presented at 2005 

Directed Energy Symposium in which a fitting method was used to determine a “phase 

correction” to a thermally bloomed beam to optimize peak irradiance.  The amount of 

cylinder in fits like these could indicate potential for this research. 

 

5.3.3. Investigate Other Wave Optics Codes 

Other popular wave optics codes, in particular WaveTrain, should be examined 

using the lessons learned from ACS.  Investigations of optimal numbers and placement of 

phase screens and sensitivity to deviations from optimal would be very useful for 

building a body of knowledge that the modeling community could use for setting up runs 

with confidence of accurate results.   

 

5.4. Conclusion 

 It is interesting that despite having an early goal to move beyond modeling of 

peak irradiance by looking at power-in-the-bucket performance in the air-to-ground 

thermally bloomed HEL, we ended up focusing even more deeply on accurate prediction 

of peak irradiance and improvement thereof.  Stepping back, this was not a terribly 

surprising turn in the research since peak irradiance will always be a useful and probably 

necessary parameter in establishing PIB scaling law models, a goal which this research 
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nevertheless advances.  Additionally, it is remains an open question as to the best way to 

develop target vulnerability models (based on Ipeak or PIB), in part because there is 

always trade off between the pristine-ness of the vulnerability model and the ability to 

predict all of the engagement parameters needed to apply that pristine a model.  However, 

all other things being equal, it would be surprising if increased Ipeak (achieved, e.g., by 

defocus or increased altitude) would not be a better operating point, and certainly useful 

to know how to do it. 

 As suggested in previous chapters, this research was motivated in part by the US 

Air Force’s Advance Tactical Laser (ATL) program.  By necessity, such programs are 

fast-moving with the resulting possibility of missing a performance-improving, or risk-

reducing, feature in the systems engineering phase.  It is satisfying therefore to identify 

the benefits of defocus and of other operational enhancements; the warnings of thermal 

blooming potential and interaction with turbulence; and a pathway to a defocus scaling 

law for Ipeak that could benefit even this fairly mature system, as well as future concepts 

to be considered. 
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